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Abstract 
 

An increasing number of vehicle dynamics control systems are being embedded into modern 

vehicles in order to assure safety and comfort of driving. All of these systems require 

information on the vehicle dynamics state variables (e.g. yaw rate, sideslip angle, roll rate 

etc.). Some of them can be measured, while others need to be estimated based on available 

measurements and appropriate vehicle kinematics/dynamics models. This thesis presents a 

contribution to the research of yaw rate and sideslip angle estimation. More specifically, a 

kinematic sensor fusion-based yaw rate estimator has been proposed, which combines the 

wheel speeds measured by standard Anti-lock Braking System (ABS) sensors and the 

measurement of vehicle lateral acceleration obtained from two accelerometers placed 

diagonally upon the chassis. Similar fusion concept has been employed for development of a 

kinematic vehicle sideslip angle estimator utilizing information obtained by low-cost inertial 

sensors and single-antenna GPS receiver. Moreover, a sideslip angle estimator based on 

vehicle dynamics model with stochastic modeling of the tire forces has been proposed and 

used for concurrent estimation of other vehicle dynamics variables and parameters, such as 

the tire sideslip angles, lateral tire forces, tire cornering stiffness, and tire-road coefficient of 

friction. The research methodology includes: setup of appropriate kinematic and/or dynamic 

vehicle models; identification, open-loop compensation, and analysis of dominant sources of 

estimation errors; and design of estimators based on the sensor fusion principle by using the 

adaptive extended Kalman filter. Verification of the developed estimators has first been 

carried out by means of computer simulations based on an experimentally verified ten-

degrees-of-freedom vehicle dynamics model comprising the magic-formula tire model. In the 

case of dynamic sideslip angle estimator with stochastic tire modeling, the estimation 

accuracy has also been verified experimentally, based on the data recorded on a test vehicle 

equipped with a high-precision inertial measurement unit and two-antenna GPS receiver, as 

well as by using a standard set of vehicle dynamics control system sensors. In order to obtain 

a favorable performance of the vehicle state variable estimation under the various operating 

conditions, a rule-based adaptation of the Kalman filter state covariance matrix has been 

utilized for kinematic estimators, while for the dynamic, model-based vehicle sideslip angle 

estimator an adaptive fading algorithm has been implemented for adaptation of the Kalman 

filter state and measurement covariance matrices. 
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Procjena stanja dinamike vozila zasnovana na fuziji 
senzora primjenom adaptivnoga Kalmanova filtra 

 

U suvremena vozila ugrađuje se niz sustava aktivnog upravljanja dinamikom vozila s ciljem 

povećanja sigurnosti i udobnosti vožnje. Ovi sustavi zahtijevaju informacije o varijablama 

stanja i parametrima dinamike vozila poput brzine skretanja, kuta bočnog klizanja i kuta 

valjanja, inercije i mase vozila, statičkih karakteristika guma, te informacije o uvjetima na 

cesti (vrsti podloge tj. koeficijentu trenja kontakta guma-podloga, kutu nagiba ceste i sl.). 

Neke od ovih varijabli mogu se izravno mjeriti, dok je druge potrebno procijeniti na temelju 

dostupnih mjerenja i odgovarajućih modela kinematike ili dinamike vozila. Intenzivan razvoj 

raznovrsnih sustava procjene (estimatora) varijabli dinamike vozila motiviran je s jedne strane 

zahtjevima za smanjenjem potrebnog broja senzora, te s time povezanim smanjenjem cijene 

sustava upravljanja dinamikom vozila. S druge strane, u posljednje vrijeme javlja se potreba 

za poboljšanjem performansi konvencionalnih sustava procjene korištenjem novih senzorskih 

tehnologija i kombiniranjem različitih modela estimatora, odnosno primjenom postupaka 

sažimanja mjerenja više različitih senzora. Na taj način, uz određivanje vrijednosti veličina 

koje nije moguće ili nije praktično izravno mjeriti, takvi estimatori također omogućuju visoku 

redundanciju rekonstrukcije varijabli stanja dinamike vozila, te s time povezanu detekciju 

kvarova senzora i poboljšanje ukupne pouzdanosti cjelokupnog sustava upravljanja 

dinamikom vozila. Nadalje, sve veći broj senzora koji se ugrađuju u suvremena vozila, kao 

što su na primjer GPS senzori za navigaciju, inercijski senzori ili inercijske mjerne jedinice 

(IMU), pružaju nove mogućnosti u pogledu točnijeg i pouzdanijeg određivanja dinamičkog 

ponašanja vozila. Temeljem dobivenih informacija moguće je predvidjeti i spriječiti kritične 

situacije kao što su proklizavanje kotača, odnosno pojava podupravljanja ili preupravljanja, 

odnosno gubitka kontrole nad vozilom. 

Ovaj rad predstavlja prilog istraživanju i razvoju sustava procjene brzine skretanja i kuta 

bočnog klizanja vozila zasnovanih na primjeni adaptivnog Kalmanova filtra i načela fuzije 

(sažimanja) senzora. Pritom se razmatra i procjena popratnih parametara dinamike vozila 

poput gradijenta statičke karakteristike autogume za bočno gibanje i koeficijenta trenja 

između autogume i podloge. Metodologija istraživanja uključuje postavljanje odgovarajućih 

modela kinematike i dinamike vozila, analizu dominantnih izvora pogrešaka procjene 

dinamičkih varijabli i parametara, te sintezu i simulacijsku i eksperimentalnu provjeru 

razvijenih sustava procjene (estimatora). 
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Temeljna hipoteza ovog rada je da se korištenjem koncepata sažimanja mjerenja s više 

senzora primjenom objedinjenog pristupa zasnovanog na adaptivnom Kalmanovom filtru i 

prikladnim kinematskim i dinamičkim modelima vozila može postići kvalitetnija procjena 

ključnih varijabli stanja dinamike vozila. 

Doktorska disertacija je organizirana kako slijedi. U prvom poglavlju dan je uvod u tematiku 

estimacije dinamičkih varijabli (varijabli stanja) modela vozila s posebnim naglaskom na kut 

skretanja i kut bočnog klizanja vozila, te pregled stanja tehnike u području estimacije varijabli 

stanja i estimacije parametara dinamičkog modela vozila (npr. nagiba statičkih karakteristika 

guma te koeficijenta trenja na kontaktu guma-podloga). Definirana je hipoteza disertacije i 

navedeni su očekivani znanstveni doprinosi istraživanja. 

Drugo poglavlje daje pregled osnovnih dinamičkih i kinematskih modela vozila te uvodi 

osnovne pojmove vezane uz dinamiku vozila i modele gume. 

Treće poglavlje opisuje osnovni (KF) i prošireni oblik (EKF) Kalmanova filtra te objašnjava 

postupak podešavanju parametara filtra koji ima za cilj postizanje optimalnog odnosa između 

brzine odziva filtra (tj. što točnijeg slijeđenja referentne vrijednosti u tranzijentima) i razine 

perturbacija (šuma) u stacionarnom stanju. Ovo poglavlje također opisuje različite izvedbe 

adaptivnog Kalmanova filtra koji se koriste za estimaciju varijabli stanja procesa s vremenski 

promjenjivim parametrima, s posebnim naglaskom na „Adaptive Fading“ izvedbu proširenog 

oblika filtra (AFEKF). 

Četvrto poglavlje razrađuje problem estimacije kuta skretanja vozila zasnovane na primjeni 

različitih kinematskih modela za slučaj kada izravno mjerenje žiroskopom nije dostupno. 

Razrađen je i analiziran koncept kinematskog adaptivnog estimatora zasnovan na sažimanju 

(fuziji) mjerenja senzora brzine vrtnje nepogonjenih kotača i bočne akceleracije (koja se mjeri 

sa dva akcelerometra postavljena dijagonalno-simetrično u odnosu na težište vozila) uz 

primjenu Kalmanova filtra. Identificirani su dominantni izvori pogrešaka kinematskog 

estimatora brzine skretanja kod odvojene primjene dvaju razmatranih kinematskih modela (tj. 

modela zasnovanog na mjerenjima brzina vrtnje kotača i modela zasnovanog na mjerenju 

dvaju akcelerometara). Razmatra se i razmjerno jednostavan koncept adaptacije Kalmanova 

filtra s ciljem postizanja visoke točnosti procjene za širok raspon radnih režima, obzirom na 

činjenicu da se razine pouzdanosti dvaju međusobno komplementarnih kinematskih modela 

mijenjaju s radnom točkom. Točnost procjene brzine skretanja provjerena je simulacijskom 

usporedbom procijenjenog signala s referentnim signalom dobivenim iz modela dinamike 

vozila s 10 stupnjeva slobode gibanja. 
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U petom poglavlju opisan je kinematski estimator kuta bočnog klizanja vozila zasnovan na 

sažimanju mjerenja inercijskih senzora (akcelerometara i žiroskopa) i signala brzine vozila 

dobivenog iz GPS prijamnika, također unutar okvira dinamičkog estimatora zasnovanog na 

Kalmanovom filtru. Pritom se GPS mjerenja sa sporom vremenskom bazom tipično 

presporom za izravnu primjenu u procjeni varijabli dinamike vozila koriste za periodičku 

korekciju posmaka (drifta) u estimiranom signalu, a koji nastaje zbog inherentnog posmaka 

signala inercijskih senzora, čiji su signali dostupni s bržom vremenskom bazom. Provedena je 

detaljna analiza pogrešaka za razmatrane kinematske modele (tj. model vozila i model 

mjerenja GPS signala) i razvijen je mehanizam adaptacije Kalmanova filtra s ciljem 

poboljšanja točnosti slijeđenja estimatora u širokom rasponu radnih režima. Performanse 

adaptivnog estimatora provjerene su simulacijskom usporedbom estimiranog i referentnog 

signala dobivenog iz modela vozila s deset stupnjeva slobode. 

Šesto poglavlje opisuje sintezu estimatora kuta bočnog klizanja vozila zasnovanog na 

nelinearnom modelu dinamike vozila sa stohastičkim modelom sila na kotačima, te primjeni 

proširenog oblika adaptivnog Kalmanova filtra. Navedeni koncept procjene kuta bočnog 

klizanja vozila je bitno manje osjetljiv na varijacije parametara determinističkog modela gume 

u odnosu na klasične estimatore, te je također manje osjetljiv na promjene tipa podloge (tj. 

koeficijenta trenja kontakta guma-podloga), čime se postiže poboljšanje u točnosti procjene 

kuta klizanja. Razvijeni estimator verificiran je na eksperimentalnim podacima snimljenim na 

testnom vozilu opremljenom, pored standardnih senzora dinamike vozila, i preciznom 

inercijskom mjernom jedinicom i sofisticiranim GPS prijemnikom s dvije antene. Pritom su 

analizirane performanse estimatora za slučaj korištenja kvalitetnih senzora za potrebe provjere 

ograničenja samog koncepta estimacije i određivanja optimalnih podešenja filtra, te 

degradacija točnosti estimatora za slučaj upotrebe standardnih senzora dinamike vozila. 

Također, razmotrene su mogućnosti djelomične kompenzacije pogrešaka i mogućnosti 

poboljšanja točnosti procjene uvođenjem adaptacijskog mehanizma s obzirom na pogreške u 

dinamičkom modelu vozila odnosno u mjernim signalima. 

U sedmom poglavlju razmatraju se mogućnosti primjene koncepata prethodno opisanog 

dinamičkog estimatora razvijenog za procjenu kuta bočnog klizanja vozila u estimaciji drugih 

dinamičkih varijabli i parametara modela, kao što su kutovi klizanja kotača, određivanja 

nagiba statičkih karakteristika gume, te klasifikaciji tipa podloge, odnosno grube procjene 

koeficijenta trenja kontakta između gume i podloge. 
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1 Introduction 

1.1 Motivation 
 
Over the last two decades vehicle dynamics control systems, such as the Anti-lock Braking 

System (ABS), the Electronic Stability Program (ESP) and the Active Roll Control (ARC) 

have experienced an accelerated development. These systems are aimed at stabilizing the 

vehicle behaviors during critical cornering, braking, and accelerating maneuvers, thus 

facilitating enhanced vehicle handling, safety, and comfort performance [1,85-87]. These 

systems require the knowledge of relevant vehicle state variables and dynamics parameters, as 

well as the information on road condition (e.g. tire-road friction and road bank angle). 

However, some of these vehicle dynamics variables, such as the vehicle sideslip angle, are 

difficult to measure or may require expensive sensors whose application is limited to test 

vehicles. Therefore, they need to be estimated based on available measurements and a known 

kinematic or dynamic vehicle model. Having this in mind, the emphasis of this work will be 

given to design of advanced, sensor fusion-based yaw rate and sideslip angle estimators by 

using the adaptive Kalman filter methodology [2-4]. 

The reference mathematical models used for vehicle dynamics state estimator design are 

divided into kinematic and dynamic models, and, consequently, estimators can be categorized 

as kinematic, dynamic and combined. The essential difference between these estimators is 

that the kinematic estimators do not require knowledge of many, often time-varying vehicle 

dynamics and tire model parameters (e.g. vehicle mass and tire cornering stiffness), while the 

dynamic estimators are more robust to sensor offsets and road bank disturbances. The most 

commonly used vehicle dynamics model is the simple, linear, single-track (bicycle) model 

[5], which, unlike the more complex nonlinear two-track model, neglects the effects of roll 

and yaw dynamics to tire forces. The linear model accurately describes vehicle motion while 

operating within the linear region of tire lateral static curve, which in the critical case of 

understeering and oversteering conditions (when the lateral tire static curve saturates) shows 

significant deviations from the actual vehicle behavior thus introducing potentially large 

estimation errors. 
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1.2 State of the art 
Overview of the state of the art in estimation of essential vehicle dynamics state variables and 

parameters that are in the focus of the research documented in this thesis (i.e. the vehicle yaw 

rate and sideslip angle, tire cornering stiffness, and tire-road contact coefficient of friction) is 

given in the following Subsections. 

1.2.1 Yaw rate estimation 
Vehicle yaw rate is typically measured by a gyroscope sensor. However, in order to reduce 

the cost of low-end production vehicles, yaw rate can be estimated by utilizing the 

measurements from other readily available and/or less expensive sensors and appropriate 

kinematic and dynamic vehicle models. Kinematic yaw rate estimation approaches are 

typically based upon: (i) non-driven wheel speed measurements [4,6,7], (ii) lateral 

acceleration measurement from single accelerometer placed in the vehicle center of gravity 

(CoG) [6], and (iii) measurements of two accelerometers placed outside of CoG [8,9]. 

However, the approach (i) is sensitive to variations of the effective tire radius and cannot be 

used during braking, the method (ii) yields accurate estimates only for quasi-static conditions 

of constant or slowly changing yaw rate, while the approach (iii) is generally sensitive to 

accuracy of sensor placement and orientation. Moreover, the method (iii) with laterally placed 

sensors [8] cannot provide the yaw rate sign and has a relatively unfavorable signal-to-noise 

ratio, while for the longitudinally placed accelerometers [9] the estimator is highly sensitive to 

sensor offsets resulting in emphasized drift-like estimation errors. 

Dynamic yaw rate estimators are based on appropriate linear or nonlinear vehicle dynamic 

models. In [8] the Kalman filter is used in order to combine the kinematic approach (iii) and 

dynamic estimation based on the linear “bicycle” model of vehicle dynamics, while in [6] the 

initial estimate obtained from the two kinematic estimation approaches (i) and (ii) is used as 

an input to a nonlinear dynamic estimator producing the final estimate. The review of 

available literature has shown that neither a detailed comparison of lateral, longitudinal, and 

possibly diagonal configurations of dual accelerometer-based kinematic yaw rate estimators 

nor a systematic analysis of estimation errors and their compensation has been performed yet. 

In addition, a detailed analysis of combining different kinematic estimation approaches in 

order to design a robust, vehicle dynamics model-free, yaw rate estimator has not been 

proposed. 
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1.2.2 Sideslip angle estimation 
Even though the vehicle sideslip angle can be directly measured by optical speed-over-ground 

sensors, this is impractical due to high sensor cost, so that the sideslip angle is typically 

estimated in production vehicles. Numerous estimation approaches from the literature 

typically use the available measurements of vehicle dynamics state variables, obtained by 

inertial sensors (INS), GPS receivers, or inertial measurement units (IMUs), and appropriate 

kinematic and dynamic vehicle models. 

The commonly found techniques used for the kinematic sideslip angle estimation include 

the use of direct integration of standard ESP sensor readings for design of open-loop [1,10,11] 

or closed-loop [12,13,79] observers, or application of Inertial Measurement Unit (IMU) and 

appropriate, more complex 6DOF kinematic models is considered [14]. The same kinematic 

models are used in estimators based on GPS and inertial sensors fusion [15-17,88], wherein 

the low-rate GPS signals are typically used for the correction of emphasized drift-like 

estimation errors due to offsets in high-rate INS measurements. There are two basic concepts 

of kinematic GPS/INS fusion-based sideslip angle estimation. The first one uses the low-cost 

single-antenna GPS receiver to estimate the yaw rate gyro bias and improve the estimation 

accuracy. The second approach is based on a more expensive two-antenna GPS receiver, 

which provides direct low-rate sideslip and roll angle measurements, thus enabling an 

effective compensation of road bank and sensor bias-related estimation errors. An alternative 

approach to sensor bias estimation through a Recursive Least Square (RLS)-based estimator is 

given in [13]. 

The dynamic model-based estimation concepts include: (i) approaches based on utilization 

of nonlinear vehicle dynamics models and nonlinear observers and known tire road friction 

model [10,11], (ii) application of vehicle dynamic model with linear [7-9] or piecewise linear 

[2,3] tire characteristics and various types of observers, and (iii) application of nonlinear 

vehicle dynamics model with stochastic description of tire forces (e.g. random-walk state 

variables [18,20, and 28] or Gauss-Markov tire models [27]) as in [20] where the sliding 

mode-based tire forces estimator has been cascaded to an extended Kalman filter-based 

estimator of sideslip angle and cornering stiffness. 

Combined estimators are aimed to benefit from the complementary advantages of kinematic 

and dynamic vehicle models and they are described in [1,10,11,21,22]. More specifically, the 

piecewise-linear tire model and a single-track vehicle model are combined with kinematic 

model-based direct integration approach in [10]. In [22] the kinematic, sensor fusion-based 
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estimator is proposed based on a linear vehicle/tire dynamic model fed by a low-cost single-

antenna GPS receiver and standard INS signals. 

In general, it can be concluded that the kinematic model-based sideslip angle estimators are 

highly sensitive to sensor offsets and road bank disturbances, resulting in potentially large 

drift-like estimation error. On the other hand, estimators using dynamic models with 

analytical or semi-empirical tire models are sensitive to model parameter uncertainties and 

unmodelled dynamics. The results in [22] indicate that for the presented combined estimator 

using a linear vehicle dynamics model predominant estimation errors can be expected for 

vehicle operation outside of the tire static curve linear region, with particular emphasis given 

on the requirement for tire cornering stiffness estimation. Having this in mind, and based on 

the given literature overview, it can be concluded that there are still significant possibilities 

for further research on: combining the kinematic estimators based on a fusion of low-cost 

GPS and standard INS. More specifically in the reviewed literature, the GPS/INS based 

sideslip angle estimators are mostly focused on the approach using the difference between the 

vehicle heading and course angle, and less on the methods relying upon the vehicle lateral and 

longitudinal velocities and underlying kinematic model. The former method typically requires 

the application of costly two antenna GPS receivers. Moreover, the systematic and thorough 

analysis of low cost GPS/INS-based kinematic sideslip estimator has not been carried out in 

the available literature yet. 

The dynamic model-based sideslip angle estimators using the nonlinear vehicle dynamics 

model with stochastic modeling of tire are, unlike the ones using the deterministic models, 

robust against the uncertainties of tire model parameters and do not require the information on 

the tire-road interface coefficient of friction [29]. This concept, has been initially introduced 

in [18,20,28] for tire-road forces and coefficient of friction estimation. In this thesis an 

extended Kalman filter-based sideslip angle estimator has been proposed, which is based on a 

nonlinear single-track vehicle dynamics model with stochastic description of lateral and 

longitudinal tire forces. The proposed reduced-order estimator concept, unlike the one 

described in [18], deals primarily with the vehicle sideslip angle estimation, and uses the 

vehicle longitudinal velocity as an additional measurement in order to increase the estimator 

accuracy in the presence of braking torque measurements inaccuracies and uncertainties of 

vehicle dynamics model parameters. 
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1.2.3 Estimation of other vehicle dynamics variables 
Although the main focus of this thesis is on estimation of yaw rate and vehicle sideslip angle, 

the same methodology can be directly or indirectly applied for estimation of other vehicle 

dynamics variables. Consequently, a short overview of tire cornering stiffness and tire-road 

friction coefficient estimation methods will be given hereinafter. 

The front and rear tires cornering stiffness constitute the essential parameters of the 

linearized, analytical tire model commonly utilized for formulation of the simplified, single-

track vehicle dynamics model (i.e. the "bicycle" model). The common tire cornering stiffness 

estimation methods [26,82,89] include: (i) direct method utilizing the state-space equation of 

the bicycle model, and its modifications (i.e. the lateral acceleration method, rdot method, and 

beta-less method) and (ii) transfer function method (i.e. utilizing the transfer function between 

steering input and yaw rate). Although direct method is straightforward and simple, the main 

problems regarding its implementation are related to the existence of singularities (e.g. when 

the vehicle is driving in straight line) and requirements for measurements or estimates of 

vehicle lateral velocity (i.e. vehicle sideslip angle) and derivative of the vehicle yaw rate. The 

most frequently used modification in the literature is beta-less method [19,20]. 

The tire-road friction coefficient is important to be estimated as an essential environmental 

parameter which determines the lateral tire force limits and consequently the margins of the 

safe, adhesion region [10]. Some methods used for estimation of the friction coefficient are 

based on monitoring the road surface by a sensor (e.g. camera, ultrasound, or temperature 

sensors) and running the classification algorithm to appoint/select the adequate surface type 

and corresponding friction coefficient. The alternative approaches are based on utilization of 

the vehicle and tire dynamics and related effects such as: tire tread deformation, wheel speed 

frequency content, longitudinal forces vs. tire slip ratio, front tire self-alignment torque etc. 

(see [25] and references therein). A robust estimator of road friction coefficient by utilizing 

both lateral and longitudinal vehicle dynamics is proposed in [25]. 

1.3 Hypothesis 
Primary research objectives of this thesis are as follows: a) design of adaptive kinematic yaw 

rate estimator based on fusion of the dual diagonally-positioned accelerometer and standard 

non-driven wheel speed sensors measurements, b) design of kinematic sideslip angle 

estimator based on fusion of the standard inertial sensors and low-cost GPS receiver, and 
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c) design of adaptive sideslip angle estimator which combines the kinematic estimation 

concept with estimation based on dynamic vehicle model and stochastic tire force model. 

The main hypothesis is that by using sensor fusion methodology and implementation of the 

adaptive Kalman filter utilizing the appropriate kinematic and dynamic vehicle models, the 

more accurate estimation of the key vehicle dynamics state variables can be achieved. 

1.4 Thesis overview 
This thesis deals with the design, implementation, and testing of vehicle dynamics state 

variable estimators with emphasis on yaw rate and sideslip angle estimation through a sensor 

fusion approach based on utilization of kinematic or dynamic models and an adaptive Kalman 

filter. Chapter 2 introduces the main concepts of the vehicle dynamics theory, including 

definitions of different coordinate frames used for describing vehicle motion and formulations 

of vehicle kinematic and dynamics models, suitable for designing the estimators of relevant 

vehicle dynamics state variables. The Kalman filtering methodology, repeatedly used within 

this thesis for design of the estimators of various vehicle dynamics state variables, has been 

overviewed in Chapter 3. 

Development of the sensor fusion-based adaptive yaw rate estimator utilizing an Extended 

Kalman Filter (EKF) has been described in Chapter 4. First, a detailed comparative analysis 

of the dominant sources of estimation errors has been conducted for each of the individual 

kinematic estimator concepts: the estimator based on the tire speed measurements and the 

estimator utilizing the two accelerometers placed in different configurations (lateral, 

longitudinal, and diagonal ones). Implementation and verification of the proposed kinematic 

estimators has been carried out by means of computer simulations in Matlab/Simulink 

environment, based on a detailed, experimentally-validated vehicle dynamics model with ten 

degrees of freedom (10 DoF) [23]. 

In order to be able to perform a detailed analysis of the accuracy of the proposed dual 

accelerometer-based yaw rate estimator and identify the major sources of estimation errors, a 

3D acceleration measurement model is developed [30]. This model yields the acceleration 

measurements of an accelerometer arbitrarily placed on the vehicle chassis. In analyzing the 

estimator performance the impact of accelerometers configurations, unmodeled roll and pitch 

dynamics, precision of sensor placement/alignment, and the sensor offsets are taken into 

consideration. The analysis of performance of kinematic estimator based on non-driven wheel 

speed measurements is also carried out and dominant sources of the estimation errors are 
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identified, such as those related to the longitudinal wheel slip due to braking, variations of tire 

effective radius, tire dynamics, and disturbances due to road bumps. 

An adaptive extended Kalman filter-based yaw rate estimator using fusion of the above two 

kinematic approaches is designed, and Kalman filter adaptation mechanism with respect to 

operating conditions is developed. The performance of such combined kinematic estimator is 

tested by means of computer simulations and compared with the performances of the 

individual estimators. Parameter tuning of adaptation mechanism and Kalman filter 

covariances is carried out in order to obtain more accurate estimation over a wide range of 

operating conditions. 

Chapter 5 deals with the development of a kinematic sideslip angle estimator based on the 

sensor fusion methodology by means of an adaptive extended Kalman filter (AEKF). The 

fusion is based on combining measurements from standard automotive ESP sensors (i.e. the 

measurements of lateral acceleration, yaw rate, and wheel speeds) with vehicle velocity 

measurements acquired from low-cost single-antenna GPS receiver with a low sampling rate. 

The vehicle longitudinal velocity pre-estimator based on non-driven (rear) wheel speed 

measurements is designed, and the impact of velocity pre-estimation accuracy on the quality 

of final sideslip angle estimation is investigated. The virtual sensors models within the Matlab 

simulation environment based on 10 DoF vehicle dynamics model [23] is implemented, with 

the emphasis on modeling of inertial sensors measurements and GPS-based vehicle speed 

measurements. The relevant error sources, with emphasis on inaccuracies and variable delays 

of GPS-based vehicle speed measurement, inertial sensors offsets, and road bank 

disturbances, are analyzed. 

Furthermore, a comprehensive analysis is undertaken in order to gain the required insight in 

the benefits of utilizing the multi-rate Kalman filter for fusion of high-rate inertial sensors 

(INS) with the low-rate GPS receiver. The inertial sensors offsets are modeled as random-

walk type state-space variables. The Kalman filter adaptation mechanism based on covariance 

matrix adaptation is implemented, in order to achieve a favorable trade-off between the 

estimator response time and noise suppression capability. The performance of the proposed 

adaptive kinematic estimator is analyzed by means of computer simulations for representative 

driving maneuvers (e.g. steady cornering, braking in cornering, and double lane change). 

Adequate sets of Kalman filter parameters are determined for different operating conditions, 

and the developed adaptation algorithm, aimed at increasing the overall estimation accuracy 

over a wide range of operating conditions, is tuned. 
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In Chapter 6 another approach in sideslip angle estimation is considered, which is based on a 

nonlinear vehicle dynamics model and stochastic modeling of tire forces. Such approach does 

not require the knowledge of deterministic tire model (i.e. tire characteristics), and it is thus, 

not sensitive to tire model parameters uncertainties. The estimator is verified in off-line mode 

based on a wide set of experimental data acquired from the instrumented test vehicle. The 

estimator accuracy has been analyzed by identifying the estimator sensitivity to measurement 

errors and vehicle model uncertainties. Moreover, the estimator performance degradation has 

been analyzed in case of using the standard set of the vehicle dynamics sensors instead of 

high performance inertial measurement unit that is typically being used in the test vehicles. In 

order to improve the estimation accuracy, adaptation of the Kalman filter has been 

implemented by utilizing the switching off the estimator in conditions of decreased 

observability (i.e. straight driving) and adaptive fading methodology to mitigate estimation 

errors caused by unmodeled disturbances (i.e. decrease of the model reliability). 

Chapter 7 considers the use of sideslip angle and tire lateral force estimates obtained by the 

estimator designed in Chapter 6 for application to concurrent estimation of tire cornering 

stiffness and tire/road friction coefficient, as two essential parameters used in describing 

vehicle dynamics. The aim of this chapter is to provide the initial formulation of the 

estimation concepts and to stipulate the feasibility of such approach. 

In Chapter 8 the main conclusions are given, as a summary of concluding remarks included 

in individual Chapters. 
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2 Vehicle dynamics 

2.1 Coordinate frames 
The rigid body movement can be described by a set of the kinematics equations containing 

translational and rotational velocities and accelerations [31]. In order to be able to write these 

equations, an appropriate coordinate frames need to be defined. The steady, inertial coordinate 

frame (X Y Z) is used as a reference frame (Fig. 2.1). The vehicle body fixed coordinate frame 

(Xb Yb Zb) is placed upon the moving object, with its origin in the body center of gravity 

(CoG) and its axes (x, y, and z) pointing in forward, lateral (on the left side), and upward 

direction.. Triplet of unit vectors uniquely defines the Cartesian coordinate frame (i, j, and k 

for inertial coordinate frame, and ib, jb, and kb for body-fixed frame). Euler angles (φ,θ, and 

ψ) are defined in the inertial reference coordinate frame and angular velocities (ωx, ωy, and 

ωz) are defined in the body-fixed frame as shown in Fig 2.1. 

X

Y

Z

j

i

k

X, Y, Z

ji k

stationary coordinate axes

unit vectors

"Euler angles" (heading, attitude, bank)
, ,

Xb , Yb, Zb

y z

jbib kb

vehicle body-fixed coordinate axes

body c.f. unit vectors, ,
x roll rate, pitch rate, yaw rate

bj
bi

bk

y

CoG

x

z

Xb
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Fig. 2.1 Coordinate frames. 
 

When analyzing the simple case of a pure rotational movement of the object and presuming 

that the origins of reference and body-fixed frame coincide, the relation between the fixed-

point coordinates in these frames can be expressed by application of the Euler angles. The 

Euler angles represent the successive rotation angles of the corresponding axes of the inertial 
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coordinate frame required to match the inertial frame with instantaneous body-fixed frame 

(detailed derivation of Euler angles [31] from the angular velocities of the body-fixed frame is 

given in Appendix A). Namely, the term “Euler angles” is typically used for the particular 

sequence of successive axes rotations (3-1-3), but for the automotive application the rotational 

sequence (3-2-1 NASA Standard Airplane) is used as more appropriate. Here, the numbers 

represent the corresponding axes rotations (e.g. 1 about x axis, 2 about y axis, and 3 about the 

z axis). Also, the angles φ, θ, and ψ are in automotive applications known as: heading, 

attitude, and bank respectively [31], but most authors in the field of vehicle dynamics control 

(e.g. [1,17,23,32]) use different nomenclature: roll, pitch and yaw angle, respectively. 

2.2 Vehicle dynamics models 
Mathematical models of the vehicle dynamics are required for development and evaluation of 

vehicle dynamics controllers and estimators. 

2.2.1 Dual-track model 
The dual-track vehicle dynamics model with six degrees-of-freedom (6 DoF) [5,23], defined 

by Eqs. (2-1) to (2-6) and illustrated in Fig. 2.2, gives a precise description of the vehicle 

dynamics (it is often referred to as a 10DoF model, where the four wheel rotational speeds are 

typically considered as four additional states). This model defines the vehicle linear 

(longitudinal, lateral, and vertical) and rotational motion (roll, pitch, and yaw). 
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Fig. 2.2 Two-track vehicle dynamics model. 
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where Ix, Iy, and Iz are roll, pitch, and yaw moment of inertia, respectively. When compared 

with the 10DoF model, derived in [23] and used for simulation analysis in this thesis, the 

above vehicle dynamics model does not take into account the inclination of roll axis and 

position of the roll center above the vehicle CoG. The four additional state equations describe 

the dynamics of the four individual wheels [23]: 

4,,1,,,, K& =−= irFI w
t
ixiDiww τω  (2-7) 

where Iw is the wheel moment of inertia, rw is the wheel effective radius, and τ D,i is the wheel 

driving torque. 

The tire forces t
xiF  and t

yiF  are obtained from the appropriate tire models (e.g. Magic formula 

model [33]) as a function of the longitudinal slip ηi, the lateral slip αi, and the normal load Fzi 

defined by equations (2-12a) to (2-12d). Here the subscript index i designates the individual 

tire/wheel (1 = front-left, 2 = front-right, 3 = rear-left, and 4 = rear-right, Fig. 2.2) while the 

superscript t denotes the tire coordinate frame. 
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The tire forces are transformed to the vehicle body coordinate frame by the following 

equations: 

i
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The tire vertical forces Fzi can be determined, in the case of neglecting roll, pitch and heave 

dynamics, from the following expressions [34,35]: 

∑∑
== +

−−
+

=
4

1

4

1
1 )(22)(2 i

xi
rf

g

i
yi

g

rf

r
z F

ll
h

F
t

h
ll

mgl
F  (2-12a) 

∑∑
== +

−+
+

=
4

1

4

1
2 )(22)(2 i

xi
rf

g

i
yi

g

rf

r
z F

ll
h

F
t

h
ll

mgl
F  (2-12b) 

∑∑
== +

+−
+

=
4

1

4

1
3 )(22)(2 i

xi
rf

g

i
yi

g

rf

f
z F

ll
h

F
t

h
ll

mgl
F  (2-12c) 

∑∑
== +

++
+

=
4

1

4

1
4 )(22)(2 i

xi
rf

g

i
yi

g

rf

f
z F

ll
h

F
t

h
ll

mgl
F  (2-12d) 

where hg is the center of gravity height. The first right hand side terms in Eqs. (2-12) represent 

the static weight-relatednominal values of individual tire normal forces Fzi0. More reliable 

normal tire force dynamics model, typically used for the tire forces simulations, includes 

dynamic effects related to the roll, pitch, and heave motion and also incorporates the vehicle 

chassis suspension dynamics models (linear or nonlinear). Such model is documented in 

literature [23,35] and used by the researchers in the field [18,36]. 

2.2.2 Single track "bicycle model" 
The most commonly used vehicle dynamics model in the field of vehicle dynamics control 

and estimation is single-track vehicle dynamics model (so-called “bicycle model”) [5], which 

is illustrated in Fig. 2.3. Within this simplified two-degree of freedom model (2 DoF), the two 

wheels on each axis (i.e. left and right wheels) are lumped together. 
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Fig. 2.3 Single-track (''bicycle'') vehicle dynamics model. 

 

The bicycle model is based on the following differential equations describing the vehicle 

lateral and yaw motion (cf. Eqs. (2-2) and (2-6)): 

( ) yryfyz FFmauvm +==+ ω&  (2-13) 

yrryffzz FlFlI −=ω&  (2-14) 

where Fyf = Fy1 + Fy2 and Fyr = Fy3 + Fy4 are lumped lateral forces at the front and rear axis of 

the vehicle. This model neglects vehicle roll and pitch dynamics, and utilizes the linear model 

of the tire forces. In the linearized model, the lateral forces acting on the front and rear axes 

are modeled as linear functions of the wheel slip angle, defined by Eqs. (2-8) and (2-9), 

wherein small angle-approximations of trigonometric functions have been applied: 
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where β is the vehicle sideslip angle (Fig. 2.3), Cf and Cr are equivalent front and rear axis 

cornering stiffness, while αf and αr are front and rear wheel slip angles of a single-track 

vehicle model derived by presuming that the vehicle chassis and wheels have identical 

velocities at wheel ground contact point [5]. Thus, the velocity of the front wheel/road contact 

point is obtained as: 
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where V denotes the vehicle CoG velocity ( CoGVV ≡ , Fig. 2.3). By dividing the expressions in 

Eq. (2-17) the following equation is derived: 
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As the small angles assumption holds for a stable vehicle (i.e. ( ) <<− fαδ , <<fα , and 

<<β ), the expression for front axis wheel slip angle reads (see Eq. (2-15)): 

V
l zf

f

ω
βδα −−=  (2-19) 

Similarly, the equations for the rear wheel are obtained: 
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By substituting the expressions for the front and rear tire lateral forces (Eqs. (2-15) and  

(2-16)) into Eqs. (2-13) and (2-14), the following equations are obtained: 
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Furthermore, by presuming that the small sideslip angle
u
vatan=β  the approximations

u
v

≈β  

and Vu ≈ can be applied, Eqs. (2-23) and (2-24) can be rewritten as: 

frrff
z

rfz CClCl
u

CC
u
vuvm δ

ω
ω +−−+−=+ )()()( &  (2-25) 

ffrrff
z

rrffzz ClClCl
u

ClCl
u
vI δ

ω
ω ++−−−= )()( 22&  (2-26) 

After rearranging the above equations, the well-known state-space formulation of the bicycle 

model is obtained: 



  Vehicle dynamics 

 
 

15

δωω
m

C
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ClCl
uv

mu
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v f
z

rrff
z
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−=&  (2-27) 
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z I
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−
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22

&  (2-28) 

Alternatively, if the sideslip angle is to be used as a state variable, instead of lateral velocity 

and the approximate expression 
u
v

≈β  holds, the following equation for the sideslip angle 

first time derivative can be obtained: 

u
v

u
uv

u
v &&&& ≈−= 2β  (2-29) 

By combining Eq. (2-29) with Eqs. (2-27) and (2-28), the following model equations are 

obtained (cf. [19]): 

δωωββ
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C

mu
ClCl

mu
CC f

z
rrff

z
rf +

−
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+
−= 2

&  (2-30) 
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ClCl
+

+
−

−
−=

22

&  (2-31) 

An alternative approach of sideslip angle modeling for application in the estimator design is 

based on utilization of the piecewise-linear tire model [10], instead of traditional, linear tire 

model approximation defined by Eqs. (2-15) and (2-16). 

[N]yfF

][oα0fα

0fF

fpC

fqC

 
Fig. 2.4 Bilinear tire static curve model [10]. 

 

The nonlinear tire static curves have been approximated by piecewise-linear curves [10] in a 

way that the two intervals (P and Q) are defined; first corresponding to the adhesion 

conditions coinciding with small tire slip angles α, and the second interval representing the 

sliding conditions present at higher values of tire slip angles. P interval is equivalent to the 
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traditional linearized model. Based on this bilinear tire model, the lateral forces in P 

(adhesion) and Q (sliding) intervals are defined as: 

fp
zf

fpfyfP C
u

l
CF ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−==

ω
βδα  (2-32) 
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βα  (2-33) 
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ω
βαα  (2-35) 

By combining the above equations, the expressions for the lateral tire forces, which are valid 

in both operating intervals, can be derived as: 
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where 0000 and rrff FF ,,, αα are known constants and 
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Inserting expressions for the lateral forces (2-36) and (2-37) into Eq. (2-13) yields: 
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After rearranging the above equation reads: 

( ) 0000 rfrrfffz
rrff

rfy FFCCC
u

ClCl
CCma ++−−+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
−+−= ααδωβ    (2-40) 

Finally the expression for the sideslip angle can be expressed as: 
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where δω and,,, ua zy represent the measured vehicle dynamics (state) variables. 
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2.3 Tire characteristics 
 
Tire characteristics are integral part of every vehicle dynamics model. In general, there are 

three types of tire characteristics used for formulation and design of the vehicle dynamics 

state and parameter estimators [33]: analytical, empirical, and stochastic (e.g. tire forces 

modeled as random walk type or stochastic variable or Markov process [18,27]). The 

analytical models can be further classified as linear, piecewise-linear or nonlinear, while the 

empirical and stochastic models are typically nonlinear. 

Fig. 2.5 shows the lateral and longitudinal static tire characteristics of a nonlinear, tire model 

as a function of the tire slip angle α, longitudinal slip η, and normal load Fz. 

t
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t y
t x

F
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]
kN[t yF

]deg[α ]kN[t
xF

t
yF

=η

=η
=η

[deg]}10,8,6,4,2,0{∈α

 
Fig. 2.5 Tire static characteristics [23,34]. 

 

The lateral static curves from Fig. 2.5 are obtained from the Magic formula model [33]. The 

tire cornering stiffness coefficient Ci (see Eqs. (2-15) and (2-16), and Fig. 2.4) is defined by 

the tire lateral force static curve gradient at zero tire slip angle (i.e. Fy(α) curve slope at its 

origin). As shown in previous Subsection, the cornering stiffness is one of the essential 

parameters of the linearized tire model. The uncertainty of tire cornering stiffness (front and 

rear), along with the uncertainties of other vehicle dynamics model parameters (e.g. vehicle 

mass and yaw moments of inertia), constitutes the main source of the errors in estimation of 

the vehicle states relying on such model. Moreover, the bicycle model cannot account for the 

effects of the roll and pitch dynamics, which in this case represent the disturbance. Therefore, 

it cannot be effectively used in case of the vehicle driving on the banked road. Also, it should 
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be noted that the linearized vehicle dynamics model is valid for the initial interval of the tire 

lateral static characteristics (i.e. linear, adhesion region, characterized with the small sideslip 

angles, in which the vehicle stability is well preserved). On the other hand, when vehicle 

approaches to the limit of the adhesion region and when it can become unstable the linearized 

model becomes unreliable. 
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3 Kalman filter 

 

Kalman filter is a recursive estimator of state variables of the linear stochastic processes based 

on the noisy and frequently incomplete set of measurements implemented in the so-called 

predictor-corrector form [2, 3, 24, 37]. It has been developed in 1960's by a Hungarian 

mathematician R. E. Kalman [24] and successfully implemented in diverse applications 

ranging from inertial navigation and tracking, sensor calibration, manufacturing and 

economics, to signal processing, state variable and parameter estimation of dynamics models, 

nonlinear model predictive control etc. [2, 37]. 

3.1 Basic Kalman filter 
Basic form of the Kalman filter is designed for application in estimation of states of the linear, 

time-variant, stochastic systems [24]. More specifically, the MIMO (“Multiple Input Multiple 

Output”) type of such linear, stochastic, discrete-time systems can be represented by the 

process model illustrated in Fig. 3.1, and described by the following matrix equations [2]: 

( ) ( ) ( ) ( ) ( ) ( )11111 −+−−+−−= kkkkkk wuGxFx  (3-1) 

( ) ( ) ( ) ( )kkkk νxHy +=  (3-2) 

where nℜ∈x  is the process state variables vector, pℜ∈u  is the control inputs vector, 
mℜ∈y  is the measurements vector, nℜ∈w  and mℜ∈ν  are process and measurement noise 

vectors respectively, nn×F  is the state transition matrix, pn×G  is the input matrix, nm×H  is the 

output or measurement matrix, and index k represents the sampling step. 

G(k-1)
)(kx

F(k-1) q-1

x(0)
H(k)

++
+

+

(k-1) w(k)

u(k)

x(k-1)

y(k)
+

q-1

 
Fig. 3.1 Time-variant stochastic MIMO process model. 
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The discrete-time Kalman filter is utilized for estimation of the state variables of the process 

defined by Eqs. (3-1) and (3-2), under presumption that the process and measurement noises 

wi ( i = 1,…,n) and νj ( j = 1,…,m) are Gaussian probability density distribution type random 

signals1 (i.e. ),0()( ii qwp ℵ=  and ),0()( jj rp ℵ=ν ), characterized by zero mean values and 

unambiguously defined covariances qi and rj.  Moreover, it is assumed that the measurement 

and the process noise vectors are independent (i.e. uncorrelated) and also that the individual 

elements of the process noise vector and measurement noise vector are uncorrelated, which 

can be formally expressed by the following expressions: 

( ) 0=kE w , ( ) 0=kE ν  

The xxE =̂  represents the expectation (mean value) value of the random variable x (i.e. the 

first order moment of random variable x). 

( ) jikkwE ji ,,0)( ∀=ν  

( )
⎩
⎨
⎧

≠
=

=
ji
jiq

kwkwE i
ji for,1

for,
)(  

( )
⎩
⎨
⎧

≠
=

=
ji
jir

kkE i
ji for,1

for,
)(νν  

Consequently, the state and measurement noise covariance matrices Q and R, for such a case 

are defined as: 

( ) ( ) ( )
[ ]( ) [ ]( )nn

T
nxn

qqqdiagwwwdiag

kkkEk

LL 2121 )var()var()var(

)(cov)(

==

== wwwQ
 (3-3) 

( ) ( ) ( )
[ ]( ) [ ]( )mm

T
mxm

rrrdiagdiag

kkkEk

LL 2121 )var()var()var(

)(cov)(

==

==

ννν

νννR
 (3-4) 

Diagonal elements of the Q(k) and R(k) matrices correspond to the variances of the individual 

elements of the state and the measurement noise vectors w and ν, respectively. The elements 

of these two matrices represent the main tuning parameters of the Kalman filter, as shown 

bellow. 

As mentioned in the chapter introduction, Kalman filter is a kind of the predictor/corrector 

recursive algorithm, and it is composed of the two distinctive estimation stages: the model 

based prediction (i.e. time-update) stage and measurement correction (i.e. measurement-
                                                 
1 Gaussian type random variable probability density distribution is defined as: 

( ) ( )221
2/)(exp2)( σπσ xxxp −−=

−  



  Kalman filter 

 
 

21

update) stage, which also requires on-line calculation of optimal Kalman filter gain based on 

the presumed covariance properties. The Kalman filter algorithm for the linear, stochastic 

MIMO state-space process model defined by Eqs. (3-1) and (3-2) and illustrated in Fig. 3.1 is 

described by a block diagram given in the Fig. 3.2. 

 

G(k-1)

F(k-1)

K(k)

)|(ˆ kkx

q-1

+

+

+

-

)0|0(x̂

(k-1|k-1)x̂

(k|k-1)x̂ +
+

H(k)

)1()1()1|1()1( −+−−−− kkkkk T QFPF
)1|( −kkP

)(kK

q-1
)|( kkP)1|1( −− kkP

)0|0(P

)()()1|()(
)()1|(

kkkkk
kkk

T

T

RHPH
HP

+−
−

)1|()]()([ −− kkkk PHKI

q-1

y(k)

u(k)

)1|(~ −kky

a

b  
Fig. 3.2 Block diagram of the calculation of the optimal Kalman gains (a) and basic discrete-

time Kalman filter state estimator (b) for linear, time-variant MIMO process model. 
 

The estimator equations are defined as: 

( ) ( ) ( ) ( ) ( )111|1ˆ11|ˆ −−+−−−=− kkkkkkk uGxFx  (3-5) 

( ) ( ) ( ) ( ) ( )111|111| −+−−−−=− kkkkkkk T QFPFP  (3-6) 

( ) ( ) ( ) ( )1|ˆ1|~ −−=− kkkkkk xHyy  (3-7) 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] 11|1| −
+−−= kkkkkkkkk TT RHPHHPK  (3-8) 

( ) ( ) ( ) ( )11 −+−= kkkkkkk |~|ˆ|ˆ yKxx  (3-9) 

( ) ( ) ( )[ ] ( )1|| −−= kkkkkk PHKIP  (3-10) 

where ( )1|ˆ −kkx , )1|( −kknxnP  and ( )kk |x̂ , )|( kknxnP  are the a-priori and a-posteriori state 

estimate vectors and state estimation error covariance matrices, respectively, K(k) is the 

matrix of optimal Kalman gains, and ( )1|~ −kky  is the measurement residual (i.e. inovation). 
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In the prediction stage (Eqs. (3-5) and (3-6)), the a-priori state vector estimate (prediction) 

and a-priori state estimation error covariance matrix are being calculated. The predicted states 

are obtained by relying on the known deterministic part of the process model and known or 

estimated variances of the measurements and process model states (matrices Q and R). By 

utilizing the observation model (i.e. process model output equation) and current 

measurements y(k) the measurement residuals (3-7) are calculated. In the measurement update 

stage, represented by Eqs. (3-8) to (3-10), the optimal Kalman filter gain matrix K(k), a-

posteriori state vector estimate )|(ˆ kkx , and state estimation error covariance matrix )|( kkP  

updates are obtained. The Kalman filter feedback gains (matrix K) are calculated based on the 

known or estimated state and measurement covariance matrices (Q and R), and they are 

optimal with respect to minimizing the covariance of the a-posteriori state estimation error 

)|(~ kkx , according to the orthogonality principle [37]. The state estimate and estimation error 

covariance matrix are then updated in accordance with calculated optimal Kalman gains. 

The a-priori and a-posteriori state estimation error covariance matrices from Eqs. (3-6) and 

(3-10) are defined as: 

( ) ( ) ( )1|~1|~ˆ1| −−=− kkkkEkk TxxP  (3-11) 

( ) ( ) ( )kkkkEkk T |~|~ˆ| xxP =  (3-12) 

where )1|(ˆ)(ˆ)1|(~ −−=− kkkkk xxx  and )|(ˆ)(ˆ)|(~ kkkkk xxx −=  are a-priori and a-posteriori 

state estimation error vectors. The discrete-time form of Riccati equation (3-6) can be derived 

by equating the (3-11) by using Eqs. (3-1) and (3-5) (also see [37, 38]): 

)1()1(~)1()1|(~ −+−−=− kkkkk wxFx  (3-13) 

( ) [ ] [ ]
[ ] [ ])1()1()1(~)1()1(~)1(

)1()1(~)1()1()1(~)1(ˆ1|

−+−−⋅−+−−=

−+−−⋅−+−−=−

kkkkkkE

kkkkkkEkk
TTT

T

wFxwxF

wxFwxFP
 (3-14) 

after some rearranging and by acknowledging that the )1( −kw  and )1(~ −kx  are independent 

the former equation reads: 

( )
)1()1()1|1()1(

)1()1()1()1(~)1(~)1(1|

−+−−−−=

−−+−−−−=−

kkkkk

kkEkkkEkkk
T

TTT

QFPF

wwFxxFP
 (3-15) 
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Similarly, the equation (3-10) for calculation of the a-posteriori state estimation error 

covariance matrix ( )kk |P  can be derived from its definition (3-12) and the following 

expression for a-posteriori state estimation error: 

[ ] )()()1|(~)()()|(~ kkkkkkkk νKxHKIx −−−=  (3-16) 

( ) ( ) ( )

[ ]{ } [ ]{ }

[ ]{ } [ ]{ })()()()()1|(~)()()1|(~)()(

)()()1|(~)()()()()1|(~)()(

|~|~ˆ1|

kkkkkkkkkkkkE

kkkkkkkkkkkkE

kkkkEkk

TTTT

T

T

KνKHIxνKxHKI

νKxHKIνKxHKI

xxP

−−−⋅−−−=

−−−⋅−−−=

=−

 (3-17) 

However, )1|(~ −kkx  and )(kTν  are independent [2], so the above equation reduces to: 

( ) [ ] [ ]

[ ] [ ] )()()()()()1|()()(

)()()()(

)()()1|(~)1|(~)()(1|

kkkkkkkkk

kkkkE

kkkkkkkkEkk

TT

TT

TT

KRKKHIPHKI

KννK

KHIxxHKIP

+−−−=

+

−−−−=−

 (3-18) 

After inserting the equation (3-8) into (3-18) and rearranging the final expression for the a-

posteriori state estimation error covariance matrix given in Eq. (3-10) is obtained. 

In order to analyze the effect of the measurement covariance (R) and a-priori state prediction 

errors ( )1|( −kkP ) upon the Kalman gains calculation and correction stage execution the 

following two marginal (extreme) cases have been considered. More precisely, if the ideal, 

noise-free measurements are assumed (measurement covariance R is a zero matrix), the 

Kalman gains matrix from Eq. (3-8) reads: 

[ ] )()()()1|()()()1|(lim)( 11

0)(
kkkkkkkkkk TT

k

−−

→
=+−−= HRHPHHPK

R
 (3-19) 

and consequently, the a-posteriori state estimate vector from Eq. (3-9) can be rewritten in a 

form: 

( ) ( ) ( ) ( ) ( ) ( )[ ] ( ) ( )kkkkkkkkkkk yHxHyHxx 11 1|ˆ1|ˆ|ˆ −− =−−+−=  (3-20) 

According to the above equations the a-posteriori state estimate is a function of the 

measurements and inverted measurement matrix (assuming matrix H is regular) and does not 

rely on the process model. The a-posteriori state estimation error covariance matrix equals 

zero ( ( ) 0| =kkP , cf. equation (3-10)), while the a-priori estimation error covariance matrix 

becomes equal to state covariance matrix ( ( ) )1(1| −=− kkk QP ). Generally speaking, if the 

measurement covariances ri are small in comparison to the state covariances qi, the Kalman 

filter state estimates will predominantly rely upon the measurements model. 



  Kalman filter 

 
 

24

On the other hand, if the state covariance matrix Q(k) tends to zero matrix (perturbations in all 

states tend to zero) in conjunction with accurate deterministic model and nonzero 

measurement covariance matrix R(k), the a-priori state estimation error covariance matrix 

( )1| −kkP  tends to zero matrix (cf. equation (3-6)) and, consequently, the Kalman gain 

matrix becomes zero as well. 

[ ] 0)()()1|()()()1|(lim)( 1

0)1|(
=+−−=

−

→−
kkkkkkkkk TT

kkP
RHPHHPK  (3-21) 

In such a theoretical case, the state estimates would rely solely upon the process model, and 

the correction (measurement update) phase would be unnecessary. In the real-world 

applications the state estimates relay on both the process and measurement models. The 

optimal Kalman gains and accurate state estimates rely on identification of realistic state and 

measurement covariance matrices which are the measure of the reliability of the process 

model and available measurements. More precisely, the ratio between the state and 

measurement covariance Q*R-1 will determine whether the weight would be given to the 

model or to the measurements. 

In most applications the measurement covariance matrix R is readily available, because it can 

be derived directly from the measured signals. On the other hand, the elements of the state 

perturbation covariance matrix Q are much more difficult to come by, since the states often 

cannot be measured and therefore the state covariance needs to be guessed based on the 

available measurements and physical properties. In consequence, the Kalman filter gains will 

be suboptimal. The tuning of Kalman filter is performed by setting the appropriate values of 

the state and measurement covariance matrices (commonly the R is kept constant and only Q 

is varied). As mentioned above, it relies on the ability to formulate an accurate description of 

the deterministic part of the process model, as well as the capability to account for all of the 

stochastic disturbances (noise) within the observed process. In particular, by tuning the 

Kalman filter with smaller covariance matrix Q values, the Kalman gains are decreased, and 

more weight is given to the state-estimate based on the deterministic part of the model, and 

reduces the impact of the measurement corrections upon the a-posteriori state estimate. At the 

same time, the filter ability to track fast changes in the states becomes less effective. On the 

other hand, by increasing the values of variances within Q matrix, the emphasis is shifted 

towards the measurements through increase of Kalman gain values that results with higher 

noise in the state estimates. The Q and R matrices are often time-variant because the levels of 

the reliability of the process model and measurements vary with the operating regimes ore 
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some external disturbances, and consequently they must be appropriately updated (see 

Subsection 3.3). 

Apart from the state and measurement covariance matrices Q and R, the initial values of the 

states and a-priori state estimation error covariance matrix )0|0(and)0|0(ˆ Px , respectively, 

have large impact on the Kalman filter performance during initial transient (after the estimator 

is re-started). The initial transient tracking errors can be reduced if )0|0(and)0|0(ˆ Px  are 

set as close as possible to their true values. Generally, if the higher initial values of the state 

estimation error covariance matrix are used in the presence of the initial state estimation 

errors, the resulting higher Kalman gains ensure faster convergence of the state estimates to 

their true values, at the expense of the increased noise. 

3.2 Extended Kalman filter 
Extended Kalman filter (EKF) is a generalization of the basic Kalman filter algorithm for the 

application to state variable and parameter estimation of nonlinear, time variant, discrete-time 

processes described by the following nonlinear dynamic process model: 

( ))1(),1(),1()( −−−= kkkk wuxfx  (3-22) 

( ))(),()( kkk νxhy =  (3-23) 

where f and h are continuously differentiable matrix functions.  

The nonlinear model approximation used for EKF design is based on the linearization of the 

model described by Eqs. (3-22) and (3-23) [2,38] around the operating point defined by the a-

posteriori state estimates from the previous time step:  

)1()1()1|1(~)1()()( 0 −−+−−−+= kkkkkkk wΩxFxx  (3-24) 

( ) ( ) ( ) )()()()()()( kkkkkkk νΨxxHxhy 00 +−+=  (3-25) 

where ( ))1(),1|1(ˆ)(0 −−−= kkkk uxfx  represents the operating point. 

The equations of extended Kalman filter read: 

( ) ( ) ( )( )1111 −−−=− kkkkk uxfx ,|ˆ|ˆ  (3-26) 

( ) ( ) ( )( )1|ˆ1|~ −−=− kkkkk xhyy  (3-27) 

)1()1()1()1()1|1()1()1|( −−−+−−−−=− kkkkkkkkk TT ΩQΩFPFP  (3-28) 

( ) [ ] 1)()()()()1|()()()1|( −
+−−= kkkkkkkkkkk TTTT ΨRΨHPHHPK  (3-29) 

( ) ( ) ( ) ( )1|~1|ˆ|ˆ −+−= kkkkkkk yKxx  (3-30) 
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( ) ( ) ( ) ( ) ( )1|1|| −−−= kkkkkkkk PHKPP  (3-31) 

where matrices F(k), H(k), Ω(k), Ψ(k) are Jacobian matrices obtained as follows: 
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=
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=
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xxx

hH kk  (3-34) 

0
)(0

)(

=

=∂
∂

=

ν
xxν

hΨ kk  (3-28) 

Note that the EKF equations (3-26)-(3-31) are similar to the equations of a basic Kalman filter 

with the exception that the a-priori state estimate and measurement residual are being 

calculated from nonlinear state model and measurement equations. Kalman gain matrix K(k), 

state estimation error covariance matrices P(k|k-1) and P(k|k), and a-posteriori state estimate 

)|(ˆ kkx  are basically derived from the equations for the common KF, besides that the F(k), 

H(k), Ω(k), Ψ(k) are Jacobian matrices obtained by linearization of the nonlinear process state 

and measurement equations (3-22) and (3-23). 

EKF filter, unlike the basic KF, is suboptimal because the nonlinear transformation of the 

state and measurement variables, needed for the purpose of linearization of the process model, 

results in non-Gaussian probability distribution of the state and measurement noise [2, 3, 37, 

38]. Moreover, the EKF algorithm tries to accomplish the aforementioned optimality at the 

expense of stability (estimator convergence). Namely, in the presence of the modeling errors 

and low excitation the estimated state variables can quickly diverge from their true values 

[41]. 

3.3 Adaptive Kalman filter 
In the case of time-variant covariance models of the state and measurement noise vectors 

and/or change in the reliability levels of the state-space and measurement models related to 

external disturbances, unmodeled dynamics, parameter variations or structure change within 

the model, sensor bias, fault etc., the Kalman filter with fixed state and measurement matrices 

cannot provide accurate estimates. In such conditions the Adaptive Kalman Filter (AKF) 
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should be used, because it enables timely adaptation of the covariance matrices resulting in 

the appropriate tuning of the KF in order to compensate for the above disturbance effects or 

changes in the underlying models. 

Consequently, various concepts of adaptive estimators utilizing Kalman filter methodology, 

such as Multiple Model-based estimator (MMAE), Innovation-based estimator (IAE), 

Residual-based estimator (RAE) etc., are proposed and evaluated in literature [37, 39, 40]. 

The MMAE runs multiple Kalman filters in parallel, each of them designed for specific, 

known disturbance or model error, so it requires the a-priori knowledge on disturbances, 

faults or possible model variations. The IAE and RAE estimate and adapt the state and 

measurement covariance matrices over the moving window based on the innovation or 

residual time sequence. Such approaches to adaptive Kalman filtering can be demanding with 

respect to computational burden (CPU power) and required memory resources, while, on the 

other hand, they are effective only if the measurement distribution and covariance model are 

consistent throughout the moving window. The adaptive fading Kalman filter (AFKF) 

represents a computationally more efficient algorithm derived from the IAE approach. AFKF 

adaptation mechanism is based on the scaling of the nominal covariance matrices R and Q by 

appropriate single or multiple scaling factors (i.e. Single Fading Factor method - SFF or 

Multiple Fading Factor method - MFF) [42, 43, 45]. 

Hereinafter, the SFF and MFF adaptive fading Kalman filter will be described in more detail 

with scaling of both the measurement and the state covariance matrices in order to be able to 

account for the errors/changes in measurements as well as in the process model. 

3.3.1 Single fading factor AFKF 
First step in SFF AFKF design is to calculate the measurement covariance scaling factor from 

the measurement innovation sequence, in order to account for the changes in the measurement 

model. The covariance of the measurement residuals (also known as innovation covariance) 

can be defined as: 

( ) )()()1|()()1|(~)1|(~ˆ)( kkkkkkkkkEk TT RHPHyyCr +−=−⋅−=  (3-29) 

This expression represents the theoretical value of the measurement residual covariance which 

is valid if the state and measurement covariance models are accurate. On the other hand, the 

true residual covariance matrix can be estimated as: 

∑
+−=

−⋅−
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=
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Mki
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1)(ˆ yyCr  (3-30) 
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where the M is the length of the time frame on which the innovation covariance estimate is 

calculated. The scaling factor is typically derived from the discrepancies between the 

theoretical and estimated values of the measurement innovation covariance (i.e. the difference 

between )(ˆand)( kk rr CC ). 

The main distinction between various AFKF implementations is related to the particular 

approach of calculating the scaling coefficients. In this particular case, the first adaptation 

coefficient ( ))()(ˆ 1 kkf rad
−= CCrα  is derived from the ratio of the estimated and theoretical 

innovation covariance matrices according to the following expression: 

( )
⎭
⎬
⎫

⎩
⎨
⎧= − )()(ˆ1,1max)( 1 kCkCtr

m
k rradα  (3-31) 

where m is the size of the measurement vector y. The second adaptation coefficient λad is 

defined by considering the case of the incomplete information on the dynamic model 

equations. Generally, the estimation errors in such a case can be reduced by increasing the a-

priori state estimation error covariance matrix. Thus the scalar adaptation factor 1≥adλ  is 

introduced to account for the increased )1|( −kkP  matrix, while adα  is still determined by 

the related increase of the innovation covariance matrix. The adλ  can be obtained by equating 

the following equation: 

)()()1|()()()()( kkkkkkkk T
adrad RHPHC +−= λα  (3-32) 

After inserting Eq. (3-29) into Eq. (3-32) and rearranging the final expression for calculation 

of the adaptation coefficient read: 

( )( )
( ))()1|()(

)(1)()()1|()()()(
kkkktr

kkkkkkktrk T
ad

T
ad

ad HPH
RHPH

−
−+−

≈
ααλ  (3-33) 

Finally, the Kalman filter equations (3-6) and (3-8) are modified (i.e. made adaptive) by 

utilizing these two adaptive coefficients: 

( ) ( ) ( ) ( ) ( )( )111|11)(1| −+−−−−=− kkkkkkkk T
adad QFPFP λ  (3-34) 

( ) ( ) ( )
( ) ( ) ( ) ( )kkkkk

kkk
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kk T
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HPK
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⋅=

1|
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)(
)(

α
λ  (3-35) 

Note that in case of measurement model-related errors the innovation covariance matrix is 

also increased ( 1>adα ), in particular due to the increase of the measurement covariance 

matrix R, while the a-priori state estimation matrix ( )1| −kkP  remains unchanged (which can 
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be facilitated by setting 1=adλ ). The related estimation errors are thus reduced, according to 

Eq. (3-35) through the decrease of Kalman gains by means of a scaling factor adα/1 . 

3.3.2 Multiple fading factor AFKF 
The adaptive fading Kalman filter with multiple fading factors is derived by applying the 

same logic as in the case of AFKF with single fading factor described above. For the case of 

errors in the observation (measurement model), the scale matrix Γmxm is calculated from the 

prediction error (deviation) between the theoretical and estimated innovation covariance 

matrices. Since the error in the innovation covariance is assumed to originate from the 

mismatch in measurement covariance matrix, the appropriate scaling matrix Γ needed to 

compensate for those deviations is obtained as: 

( ) ( ) ( ) ( )kkkkkkk T RΓHPHCr )(1|)(ˆ +−=  (3-36) 

( ) ( ) ( )[ ] ( )kkkkkkk T 11|)(ˆ)( −−−= RHPHCΓ r  (3-37) 

However due to the numerical errors (computer floating point arithmetic round-off errors, 

approximation errors in the process and observation models due to EKF linearization, Taylor-

series expansion-based approximation of the discrete-time model), the scaling matrix may 

neither be diagonal nor positive definite. Therefore the scaling matrix is derived by 

introducing the appropriate constraints to ensure the positive definiteness: 

),()( **
2

*
1

*
mdiagk ϕϕϕ L=Γ  (3-38) 

where { } mikk iii ,,1)(,1max)(* L== ϕϕ . 

On the other hand, in the case of errors in the state-space model, the related adaptation i.e. 

fading matrix )(kΛ  is defined as: 

( ) ( ) ( ) ( ) ( )[ ] ( ) ( )kkkkkkkkkk TT RHQΛFPFHCr ++−−−−= )(11|11)(ˆ  (3-39) 
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 (3-40) 

Similarly, as in the case of scaling matrix )(kΓ , the final fading matrix is derived as: 

),()( **
2

*
1

*
ndiagk κκκ L=Λ  (3-41) 

where { } nikk iii ,,1)(,1max)(* L== κκ . 
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The scaling matrix Γ* and fading matrix Λ* are applied in Kalman filter a-priori state error 

covariance and Kalman filter gain equations (3-6) and (3-8) in order to attenuate the effect of 

fixed-valued state-perturbation and measurement noise covariance matrices: 

( ) ( ) ( ) ( ) ( )1)(11|111| −+−−−−=− kkkkkkkk T
ad QΛFPFP *  (3-42) 

( ) ( ) ( )
( ) ( ) ( ) ( )kkkkkk

kkkk T

T

ad RΓHPH
HPK

)(1|
1|

*+−
−

=  (3-43) 

In this way the adaptive fading Kalman filter with multiple fading factors is implemented, that 

is robust against the disturbances or changes in the state and measurement equations. 
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4 Yaw rate estimation 

4.1 Background 
The vehicle body yaw rate is essential information needed for vehicle dynamics control 

(VDC) systems implementation. The yaw rate signal is traditionally obtained by using a 

gyroscope placed in the vehicle CoG (i.e. by using a yaw rate gyro). Alternatively, the yaw 

rate can be estimated by using other existing vehicle dynamics sensors. For instance, in [4] the 

non-driven wheels rotational speed measurements from ABS sensors are utilized for yaw rate 

estimation. Furthermore, a single lateral accelerometer placed in CoG [6] or a pair of 

accelerometers placed outside of CoG [8,9] may also be used. The yaw rate estimation 

method proposed in [6] may not be accurate for all dynamic conditions due to possible 

disturbances in road surface and road bank. The approach based on two longitudinal 

accelerometers [9] does not provide direct steady-state information of yaw rate, and may be 

sensitive to vehicle dynamics modeling errors and accelerometer offset. The estimator based 

on a pair of lateral accelerometers [8] provides direct steady-state measurement of the yaw 

rate, but it may also be sensitive to modeling errors. In addition to longitudinal and lateral 

accelerometer configurations [8,9], one may also consider combined/diagonal configuration 

[30]. In general, the main disadvantage of the accelerometer approach is the sensor offset-

related drift-like estimation error and a high sensitivity to sensor misalignment errors (see 

Section 4.3 and [30]). 

The yaw rate estimates obtained by utilizing any of the aforementioned estimator 

configurations, can be used as redundant information for the gyroscope sensor fault detection 

[6,46] or it can be applied for implementation of accurate estimators (as a low-cost 

replacement for gyroscope) based on the sensor fusion methodology [6,30,46]. In general, the 

sensor fusion concept can be used to estimate different vehicle dynamics variables such as 

gyroscope offset [4,46], sideslip angle [6], and heading angle [47]. 

The sensor fusion concept for yaw rate estimation, combining two diagonally placed 

accelerometers and the non-driven wheel speed sensors has been proposed by the author in 

[47]. This chapter describes the development and verification results of such a combined 

adaptive estimator. In order to gain more profound insight on the overall accuracy of this 

adaptive, Extended Kalman Filter (EKF)-based, kinematic yaw rate estimator a detailed 

analysis of estimation errors for each of the two utilized concepts has been carried out [30,49]. 
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The non-driven wheel speed sensor-based yaw rate estimation is essentially very simple. 

However, there are numerous effects, such as braking forces, effective tire radius variations, 

measurement delay due to tire dynamics, and road bump disturbances, which affect the 

estimation accuracy (see Section 4.2). A detailed algebraic and simulation analysis of 

estimation errors has been carried out and appropriate open-loop compensation routines have 

been proposed [48]. The remaining, uncompensated errors are significantly reduced by proper 

tuning of sensor fusion estimation algorithm [30] that combines the two aforementioned 

kinematic estimation approaches. 

4.2 Estimation based on wheel speed measurements 
For the front wheel drive vehicles the yaw rate can be estimated from the measured non-

driven rear wheel rotational speeds ωrl and ωrr [6,30,46,47]. From the kinematic relationships 

shown in Fig. 4.1, the rear wheels velocities url and urr are related to the vehicle longitudinal 

speed u, the yaw rate ωz, and the vehicle track t according to the expression (4-1). 

x

y
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zω
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t
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urr

rrl rrr

rrrl

 
Fig. 4.1 Concept of yaw rate estimation based on non-driven wheel speed measurements. 
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The longitudinal vehicle speed and the yaw rate can, thus, be calculated as: 

22
rrrrrlrlrrrl rruuu ωω +

=
+

=  (4-2) 
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where rrl and rrr are the unknown effective tire radii (see Fig. 4.2). The effective tire radius re 

shown in Fig. 4.2a is defined as a distance of the imaginary slip point S (normally located 

slightly below the road surface) from the wheel centre [49]. The rolling velocity of the wheel 

is then defined as a product of the angular velocity of the wheel and its effective radius 

wer rV ω= . The longitudinal slip velocity Vsx at the slip point is defined as difference between 

the wheel centre forward velocity Vx and the rolling velocity Vr: 

wexrxsx rVVVV ω−=−=  (4-4) 

In the case of free rolling tire (i.e. zero longitudinal slip velocity) the effective rolling radius is 

defined as wxe Vr ω= . Furthermore, the effective tire radius re decreases with increase of the 

tire normal load Fz, as illustrated in Fig. 4.2b. The effective radii vs. tire normal load 

characteristic can be modeled by the following third order polynomial in the square root of Fz 

[7]: 

2
101

2
2

3
3 wvzzze qqFqFqFqr ω++++=  (4-5) 

where the coefficients q0,…,q3 and qv1 are the tire parameters. The coefficient q0 corresponds 

to the unloaded tire rolling radius r0 that changes with the tire pressure p and the tire tread 

wear, while the last right-hand side term in Eq. (4-5) relates to the centrifugal effect of the 

wheel rotational speed on the effective radius. 
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Fig. 4.2 Effective tire rolling radius re: definition (a) and characteristic of tire effective 
radius versus normal load Fz (b). 

 

The effective tire radii are difficult to measure (and they change during driving maneuvers). 

Therefore, the constant nominal effective tire radius rn can be used for both wheels instead, as 

an approximation for estimation of the longitudinal velocity and the yaw rate: 
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)(
2

ˆ rlrr
nru ωω +=  (4-6) 

)(ˆ rlrr
n

z t
r

ωωω −=  (4-7) 

The yaw rate estimation error derived from Eqs. (4-3) and (4-7) reads: 

[ ])()(1ˆˆ~
rlnrlrrnrrzzz rrrr

t
−−−=−= ωωωωω  (4-8) 

This error is introduced by the difference between the actual effective tire radii rrr and rrl and 

the nominal tire radius rn used in the estimation equation. The effective tire radii change with 

the tire pressure and wear, roll and pitch dynamics, loaded vehicle mass, road bank and road 

bumps. Also, during braking maneuvers the measured wheel rotational speeds ωrr and ωrl will 

differ from the nominal rolling values due to the longitudinal slip. 

In the yaw rate estimation problem the tire should be considered as a nonlinear velocity sensor 

(e.g. the velocity urr in Eq. (4-3) is reconstructed by measuring the tire speed ωrr). The tire 

longitudinal dynamics introduces a variable delay of such velocity measurement, which can 

result in a transient yaw rate estimation error. The tire response is analyzed below based on a 

linearized wheel dynamics model. 

Under the presumption that the tire operates within the adhesion region of the tire static curve 

characteristic (see Section 2.3), the longitudinal linearized tire model is given by [50]: 

wtxet RFr ωτ ~~~ ==  (4-9) 

where Rt is the tire damping coefficient, Fx is the tire longitudinal force, and ωw is the wheel 

rotational speed. Symbol ‘~’ denotes small signal variations around an operating point of the 

linearized tire model characteristic (ωw0, τt0). The tire damping coefficient used in Eq. (4-9) is 

given by: 
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where η = (reωw - uw)/uw is the longitudinal slip (see Eq. (2-8)), uw is the wheel center 

velocity, and the tire static curve stiffness kx is defined as (see Fig. 4.3): 
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ωη
==  (4-11) 

The change of vehicle/wheel velocity uw induces a longitudinal microslip η of the rolling tire. 

The tire responses by generating a small longitudinal force Fx, which forces the tire rotational 
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speed ωw to follow the velocity uw /re. The dynamics of this process is described by following 

equations [30]: 

0~~0~~~~~ =+⇒==+=+ wwwdrivenwtwwtww TRII ωωτωωτω &&&  (4-11) 

2
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uI
R
I

T ==  (4-12) 

where Iw is the wheel inertia. 

The time constant Tw characterizes a delay in the wheel speed “sensing”, which causes a 

transient error in the yaw rate estimate. The time constant Tw varies with the changes of the 

wheel/vehicle speed (uw ≈ u) and the tire static curve stiffness kx. On the other hand, the wheel 

inertia Iw is constant and variations of the tire effective radius re are small. Note that the time 

constant Tw can be different for the left and right wheel due to different tire static curve 

stiffness (kx,rl ≠ kx,rr) and different wheel speeds (uw,rl ≠ uw,rr, Eq. (4-1)) during cornering. This 

difference in tire dynamics time constants and related wheel speed measurement delays 

introduces further errors in yaw rate estimation during transient conditions. 
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Fig. 4.3 Longitudinal tire static 
characteristic for various tire slip angles α. 

Fig. 4.4 Longitudinal stiffness kx 
vs. tire slip angle α. 

 

The longitudinal tire static curve given in Fig. 4.3 indicates that the longitudinal stiffness kx 

decreases with the increase of the tire slip angle α. As illustrated in Fig. 4.4, the stiffness kx 

vs. the slip angle α curve can be approximated by a 3th-order polynomial. Furthermore, for a 

constant slip angle α the stiffness kx increases approximately linearly with the tire normal load 

Fz (see Fig. 4.5 for illustration) 3
2

105.922)( ⋅+=
°= zzx FFk

α
. 
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Table 4.1 Summary of the variables 
affecting speed “sensing” delay Tw and 

related yaw rate estimation transient error  
↑⇒↑⇒↑⇒↑ zww Tuu ω~  

↓⇒↓⇒↑⇒↑ zwxz TkF ω~  

↑⇒↑⇒↓⇒↑ zwx Tk ωα ~  

↓⇒↓⇒↑⇒↑ zwx Tk ωµ ~  

 

Table 4.1 summarizes the influences of tire parameters (including the tire-road friction 

coefficient µ) on the speed “sensing” delay and the transient error of yaw rate estimation. For 

the nominal tire parameters (Iw = 1 kgm2, Fz = 4 kN, and rn = 0.337 m), kx values in the range 

of 50-120 kN (see Fig. 4.4), and vehicle velocity of 20 m/s, the time constant Tw has values in 

the range of 1.5 - 3.5 ms. The delay and the estimation error become larger for higher vehicle 

velocities, smaller tire loads, larger tire slip angles, and lower tire-road friction coefficients 

(see Subsection 4.2.1 d) and simulation results given in Fig. 4.13). 

4.2.1 Estimation error analysis 
An analysis of the various sources of the yaw rate estimation errors is conducted. The 

obtained results are illustrated by computer simulations utilizing a 10 degrees-of-freedom 

vehicle dynamics model [23]. 

a) Braking related errors 

The kinematic yaw rate estimate (4-7) is valid for the case of free rolling non-driving (rear) 

wheels. However, the rear wheels are normally braked (in addition to the front wheels), which 

can introduce significant estimation errors due to the presence of a large longitudinal slip η: 

w

wwe

u
ur −

=
ω

η  (4-13) 

This is because the longitudinal slip-related wheel speed offset (i.e. reωw ≠ uw) may be 

comparable to the small wheel speed difference ( )rlrr ωω − appearing in the estimation 

equation (4-7). By inserting the wheel speeds uw,rl and uw,rr from Eq. (4-1) in Eq. (4-13) the 

longitudinal slips for the rear left and rear right wheels read: 
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In order to focus the analysis on an impact of the longitudinal slip η on the estimation error, 

the rear tires effective radii are assumed to be constant and equal to the nominal tire radius rn. 

The estimation error is then given by: 

z
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=−= ˆˆ~  (4-15) 

Combining Eqs. (4-14) and (4-15), and rearanging yields 

)(
2

)(~
rlrr

z
rlrrz t

u ηη
ω

ηηω ++−=  (4-16) 

For the normal driving conditions, where xnbxx krkF τη =≅ (Fig. 4.6; τb = braking torque 

per wheel), Eq. (4-16) is transformed to 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
++⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

rlxrrx

z

rlxrrxn

b
z kkkkt

u
r ,,,,

11
2

11~ ωτω  (4-17) 

where kx,rl and kx,rr are the left and right longitudinal tire stiffnesses. 

According to Eq. (4-17) and the simulation results for the braking in a turn maneuver, given 

in Figs. 4.6 and 4.7, the braking related yaw rate estimation errors increase with the braking 

torque τb. For the fixed, relatively small yaw rate amplitude of 0.11 rad/s the peak estimation 

error rises almost linearly up to 150% for the braking torques reaching 500Nm per wheel (). 

Furthermore, the estimation error depends on the tire stiffness coefficients kx,rl and kx,rr, which 

change approximately linearly with the tire normal load Fz (see Fig. 4.5): 

( ) ,, bFFak zznrlx += δm    ( ) bFFak zznrrx +±= δ,  (4-18) 

where δFz denotes the cornering-related lateral tire load transfer. According to Eq. (4-17), the 

estimation error increases with the tire load decrease (e.g. due to the braking-related 

longitudinal load transfer which results in reduced rear wheels stiffnesses kx,ij, see Fig. 4.5) 

and is amplified by both vehicle velocity u and the yaw rate ωz. Simulation results in Fig. 4.8a 

confirm that the higher the yaw rate, the higher the estimation error. However, the relative 

estimation error εωz shows small variations with the yaw rate amplitude ωz, especially at 

higher yaw rate values (see Fig. 4.8b). 
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Fig. 4.6 Yaw rate and yaw rate estimation 

error response for braking in a turn 
maneuvers and various braking torques 

per wheel τb 

Fig. 4.7 Yaw rate peak estimation errors 
(absolute and relative) vs. braking torque 

τb (ωz = 0.11 rad/s, u = 20 m/s) 
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Fig. 4.8 Quasi-steady-state yaw rate estimation errors vs. applied braking torque 

for step-steer maneuver: absolute error (a), relative error (b) 
 

b) Errors caused by effective radius variations 

Another major source of the yaw rate estimation error is related to difference between the tire 

effective radii rrl,rr and the nominal radius rn (see Eq. (4-8)). It is, therefore, of interest to 

analyze in detail how the tire effective radii change in various maneuvers and what kind of 

impact this change has on the estimation accuracy. In this regard, the effective tire radii can 

be defined by the following expressions: 

rrnrr

rrnrl

rr
rr

δ
δ

−∆−=
+∆−=

 (4-19) 

where ∆r is a common component and δr is a differential component of the effective tire radii 

variation. These components are illustrated in Fig. 4.9 for a step-steer maneuver and they are 

given by: 
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where er  is the effective tire radii mean. The common variation component ∆r corresponds to 

variation of tire radii mean (same for both wheels), while the differential component δr is 

equal but of opposite sign for the inner and outer wheels. Simulation results in Fig. 4.9 indeed 

illustrate that a pure cornering maneuver dominantly induces the differential component δr 

due to the lateral tire load transfer, while a slight change of the common component ∆r is 

caused by a certain vehicle deceleration during cornering. It should be noted that the nominal 

tire radius rn in Fig. 4.9 is chosen to be lower than the actual tire effective radius mean value, 

in order to introduce a persistent (positive) common radii variation component ∆r for the sake 

of illustration. 

 
Fig. 4.9 Step-steer maneuver (ωz=0.23 rad/s, u=20 m/s): effective rolling radii of the rear 

wheels (a), absolute and relative estimation errors (b). 
 

Substituting Eq.(4-19) in Eq. (4-8) yields the following absolute estimation error equation in 

terms of the common and differential components of effective tire radii variations: 
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Since (ωrr + ωrl) >> (ωrr – ωrl), it is clear from Eq. (4-21) that the differential radii variation δr 

has much larger impact on the estimation error then the common variation ∆r. This is 
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confirmed by the algebraic sensitivity analysis of the relative estimation error Eq. (4-22) (δr 

sensitivity is much larger than ∆r sensitivity, see Eqs. (4-23) and (4-24)), as well as by the 

simulation results in Fig. 4.9 (the error is large when δr is large, t > 1s). 

),(
),(

)())((
)()(~

ˆ
rrd

rrn

rlrrrrlrrrn

rlrrrrlrrr

z

z
z f

f
r δ

δ
ωωδωω

ωωδωω
ω
ω

εω ∆
∆

=
++−∆−

+−−∆
==  (4-22) 

The sensitivities of the above relative estimation error function with respect to ∆r and δr read: 
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For the purpose of a more detailed analysis, the relative error equation (4-22) is split into ∆r 

and δr-related terms: 
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By introducing the characteristic wheel speed coefficient: 
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Eq. (4-26) is rewritten as: 
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r
rz kr δ

δδε
ω

ω +
−

=)(  (4-28) 

The coefficient kω increases with increase of the yaw rate ωz ≈ rn(ωrr − ωrl)/t and decrease of 

the vehicle speed u ≈ rn(ωrr + ωrl)/2. The common radii variation-induced estimation error 

εωz(∆r) is small and it is approximately equivalent to the relative radii change (i.e. 5% radii 

change results in approximately 5% estimation error, see Fig. 4.10a). On the other hand, the 

differential radii variation of 3% can result in an estimation error εωz(δr) from approximately 

20% to 90% depending on the vehicle velocity-related coefficient kω (the lower the coefficient 

kω, i.e. the larger the vehicle velocity and the lower the yaw rate, the larger the error, 

Fig. 4.10b). 
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Fig. 4.10 Yaw rate relative estimation errors as function of normalized effective radii 

variations: common (a) and differential (b). 
 

In order to further clarify the impact of the yaw rate ωz and the vehicle speed u on the yaw 

rate estimation error, the following analysis is carried out. Based on Eq. (4-1) the wheels 

rotational speeds can be expressed as 
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By inserting the tire effective radii equations (4-19) and the wheel speed equations (4-29) into 

Eq. (4-8) yields the following estimation error equation: 
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The second right-hand side term in Eq. (4-30) is a dominant source of the estimation error, 

because the vehicle velocity u/t has much larger magnitudes than the yaw rate (i.e. ωz ≈ 0 - 

0.4 rad/s, while u ≈ 0 - 40 m/s). 

The simulation results in Fig. 4.11a confirm that the relative estimation error significantly 

increases with the vehicle velocity (up to 45% for u = 30m/s), while the relative error is 

almost constant (εωz ≈ 20%) for a wide range of yaw rates (Fig. 4.11b). 
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Fig. 4.11 Yaw rate estimation relative error for step-steer maneuver with respect to 

 vehicle speed (a) and yaw rate amplitude (b). 
 

c) The road bank-related estimation errors 

The road bank also affects the tire effective radii and consequently the yaw rate estimation 

accuracy trough a change of the tire nominal load Fz0 = mr⋅g/2 (mr is the vehicle mass over the 

rear axle). On a road with the bank angle φB the tire normal loads Fzl and Fzr are given by (see 

Fig. 4.12a): 

B
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B
r

B
r

Bzr t
ghmgm

F φφφ sincos
2

)( +=  (4-32) 

Refereing to Eq. (4-19), the cosine terms in Eqs. (4-31) and (4-32) would cause the common 

effective tire radii variation ∆r, while the sine terms would induce the differential radii 

variation δr. Therefore, according to discussion from previous subsection, the sine terms sinφB 

≈ φB are dominant sources of the road bank-related estimation error. 

According to the simulation results in Fig. 4.12b the road bank induces an additional 

estimation error of up to 12% for φB = 10° and u = 10 m/s. The initial relative estimation error 

of 5% obtained for the zero road bank angle φB is predominantly caused by the vehicle 

velocity (in this case u = 10 m/s, cf. Fig. 4.11a). Thus, variation of the vehicle velocity u will 

shift up the relative yaw rate error vs. road bank angle characteristic in Fig. 4.12b. 
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Fig. 4.12 Road bank-related yaw rate estimation errors: illustration of road bank impact on 

tire normal loads (a), and relative estimation error for step-steer maneuver (b). 
 

The sources of effective tire radii variations are summarized in Table 4.2. The effective tire 

radii variations and the corresponding yaw rate estimation errors can be classified as static 

and dynamic. The static errors are mostly caused by tire deflation (e.g. single tire deflation 

results in differential tire radii variation δr) or tire tread wear (both tires are evenly worn 

causing the common radii variation ∆r). On the other hand, dynamic errors are related to the 

vehicle roll motion and road bank or to the vehicle pitch motion and road grade. The roll/bank 

dynamics are more critical since they cause differential tire radii variation δr, as oppose to 

pitch/grade dynamics that cause common tire radii variation ∆r. 

Table 4.2 Summary of effective radii variation sources 
(yellow shaded rows designate dominant sources of estimation errors) 

Error source ∆r δr Error type 

Tire pressure (p) + + Static 

Tire tread wear (uniform for left/right) + – Static 

Braking/accelerating (pitch angle - θ) + – Dynamic 

Cornering (roll angle -φ) – + Dynamic 

Road bank (bank angle -φB) + + Dynamic 

Road grade (grade angle) + – Dynamic 
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d) Transient estimation errors 

Transient yaw rate estimation errors are predominantly caused by two effects: (i) the effect of 

tire longitudinal dynamics on variable delay of tire velocity measurement and (ii) road bump 

disturbances [48]. 

The former type of transient estimation errors, caused by tire dynamics (see Subsection 4.2, 

Eq. (4-11), and Table 4.1), are characterized by the wheel/tire time constant Tw given by 

Eq. (4-12). According to Table 4.1, the time constant Tw and the corresponding transient 

estimation errors increase with the vehicle speed u and the tire slip angle α. 

Fig. 4.13 shows the relevant vehicle dynamics state variables and estimation errors for the 

double lane change maneuver on a low-µ surface, with an emphasized oversteer behavior. In 

such a maneuver, large yaw accelerations zω&  and tire slip angles α are present, as a worst-

case scenario with respect to estimation errors due to the tire dynamics. For the sake of clear 

illustration of tire dynamics influence, the tire radii are set to their nominal value in the 

simulations. 
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Fig. 4.13 Vehicle dynamics state variables (a) and yaw rate estimation errors (b) for double 
lane change maneuver (µ = 0.4). 

 

Intervals with relatively large transient estimation errors coincide with the presence of high 

yaw accelerations, large tire slip angles, and higher vehicle velocity (Fig. 4.13b). This is in 

accordance with the analysis summarized in Table 4.1 and the fact that the tire delay effect on 

the estimation error is more emphasized at larger yaw accelerations (faster dynamics). The 

peak estimation error of 0.03 rad/s is observed during the initial period of oversteer (Fig. 4.14, 

t ≈ 1.85 s) on the yaw rate scale of approximately 0.3 rad/s, i.e. the peak error is 



  Yaw rate estimation 

 
 

45

approximately 10%. Mostly, the relative estimation error resides well within 10% except for 

the high gradients and yaw rates around zero (a singularity in zωε  equation). 

The second source of the transient estimation errors is road-induced disturbance when the 

wheel suddenly comes across the bump on the road and the pulse-like disturbance in the 

measured wheel speed occurs. Since the yaw rate estimate is based on the small difference 

between the wheel speeds (cf. Eq. (4-7)), this disturbance can cause a significant pulse-like 

estimation error. The effect of road bump-related error is illustrated in Fig. 4.14 for the case of 

a step-steer maneuver with the steady-state yaw rate of 0.23 rad/s and the road bump 

disturbance pulse initiated at t = 3s. More precisely, the road bump disturbance has been 

simulated by adding the sine-wave-shaped pulse with amplitude of ωwbmp = 1 rad/s and 

frequency of 2.5 Hz to the left rear wheel speed signal. In the considered maneuver, the 

magnitude of thereby induced pulse-like yaw rate estimation error amounts up to 80% of the 

actual yaw rate. Therefore, the road-bump disturbance conditions must be monitored (the road 

bump disturbance detection method implemented in the combined adaptive EKF estimator is 

described in Section 4.4) and in its presence the yaw rate should be estimated by using some 

alternative estimation method (e.g. dual-accelerometer based estimator, see Section 4.3), 

because this potentially large estimation error cannot be otherwise suppressed or compensated 

for. 

 
Fig. 4.14 Illustration of road bump-related wheel speed sensor-based 

yaw rate estimation error. 
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4.2.2 Improvement of estimation accuracy by open-loop compensations 
The dominant tire radii variation-related static and dynamic yaw rate estimation errors (see 

Table 4.2) can be significantly reduced by applying relatively simple open-loop compensation 

algorithms. On the other hand, robust compensations of estimation errors caused by braking, 

tire dynamics, and road bump disturbance do not appear to be feasible. Thus, the sensor 

fusion approach, described in Section 4.4, should be utilized in order to avoid or mitigate 

impacts of these effects. 

 

a) Compensation of estimation errors related to static tire radii variations 

Compensation of the static estimation errors (primarily caused by a single tire deflation) is 

based on the difference between the measured rear wheel speeds during straight driving. For 

the case of straight driving and different tire radii rrl,s and rrr,s, the tire rotational speeds ωrl,s 

and ωrr,s differ from each other and satisfy the expression: 

srlsrrsrlsrlsrrsrr rru ,,,,,, , ωωωω ≠== where  (4-33) 

From the averaged wheel speeds (or eventually wheel positions) during straight driving the 

effective tire radii ratio can be identified: 
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This ratio is then used for compensation of the static yaw rate estimation error according to 

either of the following expressions: 
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 (4-35) 

The coefficient kc,s modifies the initial estimation equation (4-7), so that the estimated yaw 

rate for the straight driving equals zero. This provides compensation of the static differential 

radius error δr. The error due to the common radii variation (∆r) remains uncompensated, but 

this error is negligible, anyway (see Section 4.2). 

Figure 4.15a illustrates the effectiveness of the static error compensation. The small 

remaining error (for small ωz) is due to the uncompensated roll-related tire radii differential 

variation. Fig. 4.15b shows that the compensation is highly sensitive to inaccuracies of the 

compensation ratio kc,s. However, this should not be critical, because kc,s could be estimated 

very accurately by averaging speed signals in Eq. (4-34) over a relatively long periods of 

straight driving. 
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Fig. 4.15 Compensation of static tire radius variations errors for step-steer maneuver  
(u = 20 m/s): yaw rate estimates w/ and w/o compensation (a) and compensation sensitivity 

with respect to accuracy of coefficient kc,s (b). 
 

b) Compensation of estimation errors related to dynamic tire radii variations 

Dynamic effective tire radii variations and related yaw rate estimation error are mostly caused 

by the vehicle roll motion and road bank, and corresponding lateral load transfer (see 

Table 4.2). In order to be able to compensate for this dynamic error, the following tire load 

transfer function δFz(s)/ay(s) has been derived from a simplified vehicle roll motion model 

extracted from the full vehicle model [23]: 
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 (4-36) 

where Irc is the roll moment of inertia with respect to roll center, δFz is the tire normal load 

transfer, mr is the vehicle mass over the rear axle, h1 is the height of the vehicle CoG over its 

roll axis, br is the suspension damping rate for the rear wheels, and kr is the suspension spring 

rate of the rear wheels, while 22
1 tbb r=  and 22

1 tkk r= . The well-damped transfer function 

(4-36) may be simplified by a first-order lag model: 
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Fig. 4.16 shows comparative simulation responses of the tire load transfer. The second-order 

model (4-36) shows a good accuracy, except for missing a sharp load transfer peak caused by 
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nonlinear dampers in the full 10 DoF model. The first-order model predicts correct settling 

time and steady-state value, but the response overshoot cannot be captured. 
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Fig. 4.16 Lateral tire load transfer for step-steer maneuver  

(u = 20 m/s, ωz = 0.14, 0.23, 0.31 rad/s). 
 

By utilizing the described (open-loop) model (4-36) or (4-37) and the lateral accelerometer 

measurement ay, the lateral load transfer-related differential tire radii variation component δr 

can be obtained from Eq. (4-5) (with the non-dominant speed term neglected): 

2/)( outinr rr δδδ +=  (4-38) 
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3, )()( δδδδ  (4-39) 

where Fzn and rn are the nominal tire load and effective radius. 

The effective tire radius vs. load nonlinear characteristic obtained from Eq. (4-39) is given in 

Fig. 4.17 (black trace) and the nominal operating point (Fzn, rn) is marked. The normal load 

change ±δFz due to the lateral transfer causes the rear wheels radii to change by the amounts; 

+δrin (inner wheel) and -δrout (outer wheel). 
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Fig. 4.17 Illustration of tire effective radii differential variation 

due to tire normal load transfer. 
 

For the purpose of dynamic estimation error compensation, the linearized model of the tire 

radii vs. load characteristic (red dashed trace in Fig. 4.17) may be used instead of the full 

nonlinear model given by Eq. (4-39). The relevant differential radii variation approximation 

zdcr Fk δδ ⋅= ,
ˆ , obtained from the linearized model, does not differ much from the true value δr, 

although it may differ significantly with respect to δrin or δrout. Hence, the simple linearized 

model can give a good approximation of the tire radius in a relatively wide range of tire load 

changes (±2kN, Fig. 4.17). The benefit of this approach is that a single parameter kc,d is 

required instead of four parameters q1-3 for the nonlinear approach. 

Compensation of the dynamic radii variation is based on including the differential radii 

variation term rδ̂  into the nominal estimation equation (4-7): 

t
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ωδωδ
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If the linearized tire effective radius characteristic is utilized ( zdcr Fk δδ ⋅= ,
ˆ ), and the static 

compensation (4-35) is accounted for, the final compensation expression reads: 
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The simulation results in Fig. 4.18 demonstrate the effectiveness of dynamic compensation 

during cornering maneuver, for the case of using second-order roll model. Furthermore, the 
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road bank effect is inherently compensated for (Fig. 4.19), because the bank information is 

contained in the lateral accelerometer signal ay in Eq. (4-36) or (4-37). 
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Fig. 4.18 Comparative simulation results of 
dynamic compensation of effective radii 

variation for step-steer maneuver. 
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Fig. 4.19 The effect of dynamic compensation 

on yaw rate estimation errors for banked 
road. 

 

4.2.3 Concluding remarks 
The major limitations of the non-driven wheel speed sensor-based yaw rate estimator include 

a significant offset-type estimation error during braking maneuvers and a dynamics error 

during transitions over road bumps. Furthermore, effective tire radii variations due to: 

deflation of tire, roll and pitch dynamics, and road bank, introduce additional error 

components. Finally, the non-driven tire dynamics introduce a variable delay and related 

transient error of yaw rate estimation. This error increases with vehicle velocity, tire/vehicle 

slip angle, and yaw acceleration, and it is relatively small (up to 10%). 

In regard to tire effective radii variation effect, the differential tire radii change δr (caused by 

roll dynamics, road bank, and single tire deflation) has much larger effect on the yaw rate 

estimation inaccuracy (typical errors up to 40-60%) than the common radius change ∆r 

(caused by both tire deflation/wear, road grade, and pitch dynamics with typical errors up to 

5%). Moreover, the tire radii variation relative estimation errors increase rapidly with the 

vehicle speed u and they are not influenced by the yaw rate level. The road bank introduces 

additional estimation errors due to the differential radii change (up to approximately 12% for 

the bank angle of 10°). However, the tire radii variation error components can be effectively 

reduced by using open-loop compensators based on an estimated tire radii ratio for straight 

driving (static compensation), and a vehicle roll and tire vertical deflection models fed by 

lateral acceleration (dynamics compensation) in cornering. 



  Yaw rate estimation 

 
 

51

4.3 Estimation based on acceleration measurements 
Apart from the non-driven wheel speed sensor-based yaw rate estimator approach described 

in Section 4.2, kinematic estimator of the yaw rate can be designed by utilizing the 

measurements of two accelerometers placed outside of the vehicle centre of gravity (see 

Section 4.1 and references therein. In order to develop such a kinematic estimator, first the 

kinematic model of the accelerometer measurements needs to be derived. 

4.3.1 Accelerometer measurement kinematic model 
 

The accelerometer measurement kinematic model is considered for the case of accelerometer 

fixed at an arbitrary point M of the vehicle chassis horizontal plane containing the CoG point 

(see Fig. 4.20). Thus, the sensor placement at point M is defined by two parameters: the senor 

placement angle α0 and its distance rM from the CoG.  
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Fig. 4.20 Vehicle chassis frame with aligned 

accelerometer placed in point M. 
 

The velocity of point M in the moving vehicle frame (xb, yb, zb) is given by the following 

matrix equation [39]: 

MMreloM rωvvv ×++=  (4-42) 

where [ ]Twvu=ov  is the velocity vector at the vehicle center of gravity, vMrel is relative 

velocity of the point M (e.g. vMrel = 0 for this particular system), [ ]T
zyx ωωω=ω  is the 

vector of angular velocities of the moving frame, and rM is distance of the point M from the 

moving frame origin (i.e. CoG). 



  Yaw rate estimation 

 
 

52

The third term on the right-hand side of (4-42) relates to the transport velocity due to the 

rotation of the moving frame. Accordingly, the velocity of point M can be derived as: 
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Acceleration of the point M is expressed as a time derivative of (4-43), and according to the 

transport theorem equation [39] it reads: 
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da  (4-44) 

From equation (4-44) the acceleration components at the point M can be obtained. However, 

the accelerometer placed at the point M senses an additional acceleration component due to 

the earth gravity. This component depends on the orientation of the moving frame with 

respect to ground, which is described by the Euler angles (φ, θ, and ψ, see Chapter 2), and it is 

proportional to the gravity acceleration g. The gravity acceleration vector resolved on its 

components in the vehicle body frame can be defined as: 

[ ] Tggg θφθφθ coscoscossinsin −−=bg  (4-45) 

Based on Eq. (4-44) and taking into account the gravity related components (4-45), the 

general equations for the measured accelerations ax, ay, and az are expressed as: 
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where axCoG, ayCoG, and azCoG are the accelerations at the vehicle CoG without additive gravity 

components. Due to the opposite directions of the accelerometer seismic mass displacement 

and the related measured acceleration, the signs of the gravity acceleration components in 

Eqs. (4-46) to (4-48) are inverted when compared to the signs given in Eq. (4-45). 
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4.3.2 Two accelerometers measurement configurations 
The accelerometer kinematic measurement model equations (4-46) to (4-48) are used to 

derive the kinematic estimator equations for the longitudinal, lateral, and diagonal 

accelerometer configurations illustrated in Fig. 4.21. 
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Fig. 4.21 Accelerometer placement configurations: longitudinal - sensors 1&2, 

 lateral - sensors 3&4, and diagonal - sensors 5&6. 
 

Longitudinal (tangential) configuration 

The acceleration signals ay1 and ay2, measured by the accelerometers 1 and 2 in Fig. 4.21, are 

derived from Eq. (4-47) for α0 = 0° and α0 = 180°, respectively: 

( ) θφωωω cossin11 glaa zyxyCoGy +++= &  (4-49) 

( ) θφωωω cossin22 glaa zyxyCoGy ++−= &  (4-50) 

Adding up the measured signals given by (4-49) and (4-50) yields the lateral acceleration 

estimation equation: 
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On the other hand, subtracting the expressions (4-49) and (4-50) yields the yaw acceleration 

estimate: 

yxz
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= &&

21

21ˆ  (4-52) 
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The yaw rate ωz can be estimated by means of integration of the yaw acceleration estimate 

[4,9]. 

( ) ∫∫∫ +=−⋅
+

== dtdtaa
ll

dt yxzyyzz ωωωωω 21
21

1ˆˆ &  (4-53) 

 

Lateral (radial) configuration 

The signals measured by the accelerometers 3 and 4 in Fig. 4.21 read: 

( ) θφωω cossin22
33 glaa zxyCoGy ++−=  (4-54) 

( ) θφωω cossin22
44 glaa zxyCoGy +++=  (4-55) 

This yields the following kinematic estimators equations: 

( ) θφωω cossin
22

ˆ 224343 glla
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a zxyCoG
yy

y ++
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+

=  (4-56) 
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342ˆ xz
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=  (4-57) 

In this case the square power of yaw rate is directly derived by subtracting the accelerometers 

measurements: 

( )
43

34sgnˆ
ll
aa yy

zz +

−
⋅= ωω  (4-58) 

what imposes the requirement on yaw rate sign estimation [4,8]. 

 

Diagonal (combined) configuration 

The readings of new measurement configuration of diagonally placed accelerometers 5 and 6 

in Fig. 4.21, proposed and applied for design of the kinematic yaw rate estimator in this 

thesis, are given by: 

θφαωωωαωω cossincos)(sin)( 050
22

55 gllaa zyxzxyCoGy +++++= &  (4-59) 

θφαωωωαωω cossincos)(sin)( 060
22

66 gllaa zyxzxyCoGy ++−+−= &  (4-60) 

Eqs. (4-59) and (4-60) yield the following estimation equations: 



  Yaw rate estimation 

 
 

55

( ) ( ) 0
65

0
2265

65

cos
2

sin
2

cossin
2

ˆ

αωωωαωω

θφ

zyxzx

yCoG
yy

y

llll

ga
aa

a

&+
−

++
−

+

+=
+

=
 (4-61) 
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where χ denotes the accelerometer measurement term [4]. 

After neglecting the small roll and pitch rate terms on the right-hand side of Eq. (4-62), the 

following estimator nonlinear differential equation is derived: 

0ˆtanˆ 2
0 =−⋅+ χωαω zz&  (4-63) 

This estimator combines the features of the algebraic estimator (4-58) and the “dynamic” 

estimator (4-53). The following subsection describes a detailed algebraic analysis of the 

estimation errors and evaluation of the dominant error sources for these three kinematic 

models/estimators configurations (i.e. longitudinal, lateral, and diagonal). 

4.3.3 Algebraic analysis of estimation errors 
The estimation equations (4-51), (4-56), and (4-61) indicate that the estimated lateral 

acceleration corresponds to the aimed one measured at the CoG ( yâ = ayCoG + g sinφ cosθ ), 

provided that the two accelerometers are placed at equidistant positions with respect to CoG 

(the nominal case: l1 = l2, l3 = l4, l5 = l6). The below algebraic analysis is, thus, focused on the 

yaw rate estimation error for the same nominal case. 

The performance of derived kinematic estimators has been analyzed against the major sources 

of estimation errors by means of computer simulations and utilizing the appropriate validation 

model structure outlined in Fig. 4.22. More precisely, a passenger vehicle 10DOF chassis 

model [23] implemented in Matlab-Simulink is used in order to generate the vehicle dynamics 

quantities signals, required for calculating the vehicle acceleration components based on the 

realistic 6DOF kinematic measurement model described by Eqs. (4-46)-(4-48). Thus obtained 

accelerations are then used as inputs for the derived yaw rate estimators defined by Eqs. (4-

53), (4-58), and (4-63). At the estimator outputs the vehicle lateral acceleration, yaw rate, and 

yaw acceleration estimates are obtained. They are compared to the reference values from the 

10DOF model, in order to determine the estimation accuracy. 
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Fig. 4.22 Block diagram of validation model for evaluation of two-accelerometers-based 

kinematic yaw rate estimators. 
 

For the subsequent error analysis the following definition of the relative estimation error zωε  

has been utilized: 

z

zz

z

z
z ω

ωω
ω
ωεω

−
==

ˆ~
ˆ  (4-64) 

where zω~  represents the absolute estimation error. 

a) Vehicle roll and pitch dynamics-related errors 

For the longitudinal accelerometer configuration the following expressions for the 

estimation errors are derived from Eqs. (4-52) and (4-64): 

∫∫ ==⇒= dtdt yxzzyxz ωωωωωωω ~~~
&&  (4-65) 

∫= dtyx
z

z ωω
ω

εω
1  (4-66) 

The roll and pitch rate transients are not expected to induce any significant peaks of the yaw 

rate estimation error, because the product ωxωy is small and the integration process in (4-66) 

further rejects the transient error. However, integration of the even small steady-state error 

term ωxωy can result in a slow accumulation of yaw rate estimation error (a drift-like 

behavior). 

For the lateral configuration estimator expression (4-58), the related absolute yaw rate 

estimation error reads: 
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For the case of 1/ 22 <<= zxx ωω  the square root term in (4-67) may be approximated by the 

Taylor series expression: 
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where 0and1 0 =< xx . After neglecting the higher series members (n ≥ 2) in (4-68), the 

following approximate equation for the yaw rate estimation error is obtained: 

2

2

2
1

z

x
z ω

ω
ε ω ≈  (4-69) 

According to the above expression, the yaw rate estimation accuracy of the lateral 

configuration-based estimator is not affected by the vehicle pitch rate ωy, but only the roll rate 

ωx. 

Finally, for the diagonal configuration estimator (4-63), the estimation error is given by: 

0for,
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⎝
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−−= z
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z ω
χ
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χ
εω &  (4-70) 

0
2 tan~ αωωωχ xyx +=  (4-71) 

In this case, both roll and pitch disturbance terms ωxωy and 2
xω  from the longitudinal and 

lateral configuration error expressions (4-66) and (4-69) are present in the combined 

(diagonal) configuration error (4-70). Also, the integration process, needed to obtain zω̂ from 

(4-63), is expected to result in a drift-like error due to the disturbance term χ~ . 

Figure 4.23 shows the roll and pitch dynamics-related yaw rate estimation errors (i.e. its peak 

values) as functions of the steering wheel magnitude δ for the step steer maneuver, and the 

braking torque (per wheel) τb for braking in turn maneuver. 

The lateral configuration estimator has the largest errors in both maneuvers (ωz = 7-22% for 

cornering and ωz < 2% for braking), because it is sensitive to roll dynamics. The longitudinal 

and diagonal estimators provide similar performance in braking maneuvers, but the 

longitudinal one is somewhat better for cornering. For all estimators the error increases with 
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increase of the steering wheel angle (for cornering) and increase of the braking torque (for 

braking), because in that cases the related roll (ωx) and pitch (ωy) rates increase, as well. 

Altogether, these errors are rather small (lower than 5%) for the longitudinal and diagonal 

configurations. 
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Fig. 4.23 Roll and pitch dynamics-related yaw rate estimation transient errors 

for cornering maneuvers (a) and braking in turn maneuvers (b). 
 

b) Accelerometer misalignment angle-related errors 

Another major source of errors of the accelerometer-based kinematic yaw rate estimators is 

related to sensor misalignment. More precisely, the constraints in the accuracy of vehicle 

assembly may cause a misalignment of the accelerometer axes (xa, ya, za) with respect to the 

vehicle body frame (xb, yb, zb), as shown in Fig. 4.24. This misalignment is characterized by 

the misalignment angle γ, as illustrated in Fig. 4.24. 
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ay

axaxm
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Fig. 4.24 Accelerometer axis misalignment. 
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The measurement of the misaligned accelerometer can be expressed as: 

iixiiyiym aaa γγ sincos ,,, −=  (4-72) 

where the subscript i=1,2,…,6 denotes the accelerometer number, as illustrated in Fig. 4.21. 

The misalignment-related relative yaw rate estimation error is calculated by comparing the 

yaw rate estimates of misaligned and aligned accelerometers: 

z

zzm
zm ω

ωω
εω ˆ

ˆˆ −
=  (4-73) 

The accelerometers are assumed to be placed equidistant from the vehicle CoG (i.e. l1 = l2 = lx, 

l3 = l4 = ly, and l5 = l6 = ld). 

Combining Eqs. (4-46), (4-47), and (4-72), and rearranging gives the following equations for 

measurements of the misaligned accelerometers placed in the longitudinal configuration: 

( ) ( )
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 (4-75) 

From these measurements the yaw rate is estimated according to Eq. (4-53). The related 

misalignment error defined by Eq. (4-73) is: 

( ) ∫∫∫ −=−= dtdtdt zzm
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ωω

ω
εω &&&&  (4-76) 

Applying Eq. (4-52) and using the approximate terms for trigonometric functions of small 

angles (i.e. sinγ ≈ γ and cosγ ≈ 1 for γ ≈ 0) gives: 
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 (4-77) 

The third right-hand side term of Eq. (4-77) represents the dominant source of misalignment 

error, because 2
2,1γ  and 2

,zyω  are relatively small. Namely, in the presence of large vehicle 

longitudinal acceleration axCoG and road grade (large θ ) the error may be quite high even for 

small misalignment angles γ1 and γ2. 
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Combining (4-46), (4-47), (4-57), and (4-72) gives the following expression for square power 

of the yaw rate estimate for the lateral configuration of misaligned accelerometers: 
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 (4-78) 

The misalignment-related relative error reads: 
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In addition to the aforementioned dominant influence of the longitudinal acceleration/road 

grade, estimation based on the lateral configuration of misaligned accelerometers is sensitive 

to abrupt changes of yaw rate (i.e. to yaw acceleration zω& ). Due to the absence of integration 

(filtering) process in (4-79) when compared to (4-76), it is expected that the misalignment 

errors will be larger than for the longitudinal configuration, but the drift-like effect will not be 

present. 

The measurement term χ for the diagonal configuration defined by (4-63) is given in (4-62). 

When the accelerometers are misaligned by the angles γ5 and γ6, the measurement term χMA 

reads: 
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 (4-81) 

The dominant misalignment error terms proportional to (axCoG-gsinθ) and zω& are filtered by the 

estimator differential equation (4-63), so that the error should be significantly smaller than in 

the case of the lateral configuration. 
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Simulation results in Figs. 4.25 and 4.26 indicate that the accelerometer misalignment error of 

only a few degrees can easily cause excessive yaw rate estimation errors. Moreover, the 

lateral configuration estimator is found to be the most sensitive to the misalignment related 

errors (red trace in Figs. 4.25 and 4.26). This is because the abrupt yaw rate changes 

(large zω& during step steer maneuver) and large longitudinal accelerations (large axCoG during 

braking maneuver) affect the estimation error in a direct, algebraic manner (see Eq. (4-80)). 

On the other hand, for longitudinal and diagonal configurations the integration process (see 

e.g. Eq. (4-76)) filters the zω&  and axCoG disturbance terms. Consequently, the error peaks are 

largely rejected, but a drift-like behavior (slow increase of error) is present. The braking 

maneuver is more critical then cornering, because of larger forward accelerations (e.g. 

axCoG ≈ -2 m/s2 for the braking in Fig. 4.26 and axCoG ≈ -0.2 m/s2 for the cornering in Fig. 

4.25). 
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Fig. 4.25 Misalignment-related yaw rate estimation errors for step steer cornering maneuver 

(δsw = 50°, Tb = 0, α1 = 2°, α2 = 3°). 
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Fig. 4.26 Misalignment-related yaw rate estimation errors for combined, step steer 

(controlled velocity) and braking maneuver (δsw = 23°, τb = 300 Nm, α1 = 2°, α2 = 3°). 
 

The misalignment-related estimation errors as functions of the accelerometer misalignment 

angles (up to 5°) for maneuvers from Figs. 4.25 and 4.26 and different accelerometer 

configurations are shown in Figs. 4.27 and 4.28, respectively. 
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Fig. 4.27 Influence of accelerometer misalignment angles on yaw rate estimation error for 

cornering maneuver (see Fig. 4.25): steady-state mean errors calculated in the time interval 
2-5 s (a) and transient (peak) errors calculated in the time interval 1-2 s (b). 
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Fig. 4.28 Yaw rate estimation errors vs. misalignment angles 

for combined, step steer and braking maneuver in Fig. 4.26 at t = 12.5 s. 
 

The relative steady-state estimation errors for the cornering maneuver and any of 

accelerometer configurations are within 15% for the considered misalignment angle span 

(Fig. 4.27a). However, the lateral estimator has a disadvantage of a substantial transient error 

(over 50%, Fig. 4.27b, see also Fig. 4.25). For the case of excessive braking the misalignment 

related errors are unacceptable for all three accelerometer configurations (Fig. 4.28) The 

errors diminishes for ji γγ = , because the dominant forward acceleration (axCoG) disturbance 

term is canceled in that case (see Eqs. (4-77), (4-80), and (4-81)). 

 

c) Accelerometer measurement noise-related errors 

The impact of the measurement noise on the performance of all three estimator configurations 

has also been considered and evaluated. Thus, for the noisy accelerometer measurements and 

the lateral accelerometer configuration the noisy yaw rate estimate znω̂ can be expressed as (cf. 

Eq. (4-57)): 
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where n3 and n4 are the sensor additive noise signals with the Root Mean Square (RMS) value 

σ0, and zω̂  is the corresponding noise-free yaw rate estimate. If the condition 
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2
34 ˆ2/)( zylnn ω<−  is satisfied, and after applying Taylor series expansion according to 

Eq. (4-68), the noisy yaw rate estimate can be expressed as: 
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Furthermore, for 2
34 ˆ2/)( zylnn ω<<−  the above estimate can be approximated as: 
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In the case of steady-state conditions ( znzz i ωωω ˆˆ)(ˆ == ) and after applying the rule for the 

variance of the sum of random variables )()()( 2
2

1
2
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2 xxxx σσσ +=+ , the noise RMS value 

of the estimated yaw rate 
znωσ ˆ  can be derived according to the following equation: 
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The higher the yaw rate ωz and the larger the accelerometer distance 2ly,, the lower the noise 

RMS value
znωσ ˆ . 

The longitudinal and diagonal configuration estimators (4-53) and (4-63) integrate the 

accelerometers measurement signals, and they are, therefore, much less sensitive to the 

measurement noise. 

The yaw rate estimate noise RMS levels given in Table 4.3 are obtained from simulations for 

the step steer cornering maneuver with the constant yaw rate of 0.14 rad/s and the following 

distances of the accelerometers from the CoG: lx = 1.5 m, ly = 1 m, and ld = 1.8 m. Table 4.3 

confirms that the longitudinal and diagonal estimators have significantly lower noise RMS 

values (approximately by two orders of magnitude) due to the integration process. 

Table 4.3 Yaw rate estimation noise RMS values 
Noise RMS Estimator 

configuration Absolute [rad/s] Relative [%] 
Lateral 3.173e-3 2.25 
Longitudinal 1.146e-5 8.10e-3 
Diagonal 1.067e-5 7.52e-3 
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d) Accelerometer offset-related error 

The inherent offset of the accelerometer measurement affects the accuracy of yaw rate 

estimation. According to Eq. (4-57), the constant small accelerometer offset introduces a 

constant small yaw rate estimation error for the lateral accelerometer configuration. On the 

other hand, the longitudinal and diagonal configurations estimators (see Eqs. (4-53) and (4-

63)) integrate the acceleration signal, and therefore they accumulate a drift-like estimation 

error whenever the offset is present. The drift effect is generally less emphasized for the 

diagonal configuration, because the first-order lag reconstruction is used instead of pure 

integration. 

A more detailed analysis of the accelerometer offset related drift-like estimation error, for 

diagonal sensor configuration, has been carried out in order to gain better insight into 

limitations of the pure-kinematic accelerometers-based yaw rate estimators. Namely, the 

application of closed-loop estimator utilizing the EKF methodology (see Section 3.2) has 

been considered in order to find out if such approach could ensure inherently smaller 

estimation errors when compared to the estimates obtained from the basic open-loop 

kinematic estimator (Eq. (4-63)). Thus, after linearization of the kinematic estimator equation 

(4-63) the following continuous-time domain first-order lag-type transfer function model can 

be derived: 
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where the process model gain Ke and the time constant Te depend on the sensor placement 

angle α0 and the current yaw rate magnitude ωz0 (i.e. the operating point). More precisely, at 

smaller yaw rates (i.e. the worse signal-to-noise ratio), the process time constant Te and gain 

Ke are larger. Hence, the inherent process model noise filtering feature is improved (i.e. the 

process is characterized by improved noise suppression capabilities at smaller yaw rates), 

while at the same time due to the larger Ke the estimator sensitivity is increased. Note that as 

the yaw rate decreases the accelerometers measurement signal χm becomes smaller as well. 

In the process of formulation of the closed-loop Kalman filter-based estimator, the following 

discrete-time representation of the state-space process model is used as a basis for further 

analysis: 
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( ) ( ) ( ),11 −+−= kkk υΩxFx  (4-85) 

The state vector x, state transition matrix F, state perturbation matrix Ω, and state noise vector 

υ are given by: 
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where T is the sampling time. The nonlinear output equation in the presence of the 

accelerometer offsets read (cf. Eq. (4-63)): 
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0&xh  (4-86) 

where χm (unlike the measurement term χ in Eq. (4-63)) is the accelerometers measurement 

with included additive accelerometer offsets term δχ , while eχ is the zero mean Gaussian 

measurement noise. The above measurement offset term can be obtained from the following 

expression: 
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where the ay5o and ay6o are the individual accelerometers offsets for diagonal measurement 

configuration (cf. Fig. 4.21). 

The particular EKF algorithm is described by the following equations (see Section 3.2): 
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( ) ( ) ( ) ( )1|~1|ˆ|ˆ −+−= kkkkkkk yKxx  (4-91) 

( ) ( ) ( ) ( ) ( )1|1|| −−−= kkkkkkkk PHKPP  (4-92) 

where the output matrix H(k) is obtained by linearization of the nonlinear output matrix 

equation h(x) (i.e. by calculating the below Jacobian matrix): 
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Note that, instead of the unknown true instantaneous yaw rate ωz0, the a-priori state estimate 

( )1|ˆ −kkzω  is used in calculating the update of the output matrix H(k). The state covariance 

matrix Q and measurement covariance R read: 

[ ]( )ωω &qqdiag=Q ,    χr=R . 

For the considered EKF algorithm, the transfer functions ωχG  and χω&G  between the 

corresponding state variables and the nominal, offset-free measurement χ can be obtained 

from the following matrix equation [51]: 
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where K  is the steady-state stationary Kalman gains matrix and I is the unit matrix. For the 

consequent analysis only the transfer function Gωχ(z) =ωz(z)/χ(z) is relevant: 
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where ωK and ω&K  are Kalman gains and b0 = 2tanα0. 

In the presence of the accelerometers offsets the measurement model from Eq. (4-86) applies. 

Consequently, by applying the Z-transform based on the zero-order-hold element, the process 

model output equation is transformed into the following discrete-time model 

( ) ( ) χδωρ
ρ

χ
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1
−

+
−

⋅=
z

zz
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zz zm , (4-96) 

where: 

0tan21 α
ρ

⋅+
=

T
T  (4-97) 

and the second right-hand side term relate to the accelerometers offset. In order to analyze the 

effects of accelerometer offset to the EKF-based yaw rate estimation error zω~ , the transfer 

function model given in Eq. (4-95) is employed: 

( ) ( ) ( ) ( ) ( ) ( )zzzGzzz zmzzz ωχωωω ωχ −=−= ˆ~  (4-98) 

After inserting χm(z) from Eq. (4-96) into the Eq. (4-98), the yaw rate estimation error reads: 

( ) ( ) ( ) ( ) ( ) χωχωω δωωωω )(1)(ˆ~
0 zGzzGzzz zzzz +−=−=  (4-99) 

where: 
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By inserting the Kalman filter transfer function (4-95) into Eq. (4-101) yields the following 

expression for yaw rate estimate vs. measurement offset transfer function: 

( )

( )
( )[ ] 121

)(
)(ˆ

0000
2

0

+−−−+++
+−

⋅
−

=

=

ωωωωω

ωωω

χ
ωχ

ωω

δ
ω

&&&

&

KKbzKTKKbz
TKKzKz

z
z

z
zzG

zz

z

 (4-102) 

The steady-state yaw rate estimation error can be obtained from Eq. (4-99) by applying the 

final value theorem [52,53]: 
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The measurement offset δχ and yaw rate ωz are assumed to be constant. The second right-hand 

side term in Eq. (4-103) defines the steady-state estimation error induced exclusively by the 

measurement offset. Inserting the transfer function Gωχ0(z) from Eq. (4-102) into Eq. (4-103) 

yields the following expression for steady-state offset-related estimation error 0
~

zω : 
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After some rearranging the final equation for the estimation error is obtained: 

( ) χδ
ωα

ω ⋅
⋅

=∞→
00

0 tan2
1~

z
z k  (4-105) 

Equation (4-104) indicates that the offset-related steady-state estimation error does not depend 

on the choice of the estimator parameters (i.e. estimation gains ωK  and ω&K ) but only on the 

operating point ωz0. Therefore, the estimator which utilizes accelerometer measurements only 

cannot compensate for the additive measurement offset error. The above equation also 

suggests that the relative steady-state estimation error can be very large for small yaw rates, 

because the relative error 00
~

zzr ωω=  is inversely proportional to the yaw rate squared. 

Consequently, the drift effect for the diagonal configuration is most emphasized at small yaw 

rates (large error transfer function gains). 
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The results illustrated in Fig. 4.29 are obtained from simulations for the diagonal 

measurement configuration and the following accelerometer offsets aoff5 = 0.05 m/s2 and 

aoff6 = -0.03 m/s2 (i.e. χoff = 0.0314 s-2). The drift-like estimation error accumulates quite 

rapidly (according to the 2nd-order dynamics described by Eq. (4-102)) for t < 1s when ωz0 = 

0, while later it increases at much slower rate. This is because the rate of the error increase is 

inversely proportional to the yaw rate magnitude as shown in the above analysis, while the 

longitudinal configuration is characterized by constant/high error accumulation rate for a 

given sensor offset and sampling time. 
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Fig. 4.29 Illustration of acceleration offset-related errors for 

diagonal estimator and step steer maneuver. 
 

4.4 Fusion of the wheel-speeds and acceleration based estimation 
approaches 

The combined kinematic estimator concept described herein is based on the fusion of 

measurements of two accelerometers placed in diagonal configuration upon the vehicle 

chassis (this configuration is favored over the lateral and longitudinal ones illustrated in Fig. 

4.21, because it has the best overall performance in terms of the estimation accuracy) and the 

speed sensors of the rear non-driven wheels (i.e. the front wheel drive vehicle is implied). The 

sensor setup is illustrated in Fig. 4.30. This fusion estimator utilizing the adaptive extended 

Kalman filter (EKF) methodology (see Chapter 3) is used in order to overcome the 

restrictions upon the estimation accuracy of the previously described, individual kinematic 

estimators (cf. Sections 4.2 and 4.3) and to benefit from their complementary advantages. 

More precisely, the main disadvantage of the accelerometer approach is the sensor offset-

related drift-like estimation error and a high sensitivity to sensor misalignment errors, while 
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the ABS yaw rate estimation approach is compromised in the cases of braking, tire deflation, 

or road disturbance. Within the proposed sensor fusion-based kinematic estimator the ABS 

measurements are used to compensate for the accelerometer offset-related estimation errors, 

while the accelerometers compensate for the inaccuracy of the ABS sensors-based yaw rate 

estimate during braking. The developed estimator also takes into account the effects of the 

effective tire radii variation due to tire deflation, vehicle lateral load transfer, and road 

disturbances. 
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Fig. 4.30 Illustration of the sensor configuration for the combined, fusion-based 

kinematic yaw rate estimator. 
 

For the purpose of fusion-based estimator design, the process model is established based on 

Eq. (4-41) (i.e. the wheel speed sensor-based yaw rate estimation equation including the 

compensation coefficients kc,s and kc,d for eliminating the static and dynamic effective tire 

radii variations-related errors) and Eq. (4-63) (i.e. diagonal accelerometers measurement-

based yaw rate estimation equation) extended by the accelerometer offset: 
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where ayfo and ayro are the accelerometers offsets, and δχ is the offset-related measurement 

error term. For the analysis, these quantities may be considered to have constant values, while 

usually they slowly change with temperature, aging etc. 

The process model is represented by the following set of state-space equations: 
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where the yaw rate zω , the yaw acceleration zω& , and the accelerometer measurement offset 

δχ are modeled as random walk-type stochastic states. By applying the Z-transform based on 

the zero-order-hold element, Eq. (4-107) can be transformed into the following discrete-time 

model: 

)1()1()( −+−= kkk υΩxFx  (4-108) 

with x, υ, F, and Ω defined as (T = sampling time): 
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The following process model output (measurement) equation comprises the combined 

measurements of accelerometers χm and wheel speed sensors ωzw: 
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where eχ and ew are zero-mean Gaussian measurement noise components with the variances rχ 

and rw, respectively. Note that the state-space process model from Eq. (4-108) is linear while 

the nonlinearity is only present in the output equation (4-109). 

The Extended Kalman Filter (EKF) equations (see Subchapter 3.2) for the stochastic system 

defined by Eqs. (4-108) and (4-109) read [2]: 
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TT kkkkk ΩQΩFPFP )1()1|1()1|( −+−−=−  (4-112) 
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( ) ( ) ( ) ( )11 −+−= kkkkkkk |~|ˆ|ˆ yKxx  (4-114) 

( ) ( ) ( ) ( ) ( )11 −−−= kkkkkkkk ||| PHKPP  (4-115) 

where Ω  is the state noise conditioning matrix defined as nT IΩ ⋅= . 
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The observation matrix H is obtained by linearizing the nonlinear process model output 

equation (4-106), which yields: 

χδωαωχ ++= 00tan2 zzm &  (4-116) 

where 0zω is the yaw rate operating point. For the purpose of the convenience, the yaw rate a-

priori estimate )1|(ˆ −kkzω  is used within the EKF algorithm for calculating the output matrix 

update: 
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Assuming that the stochastic state perturbations ( ωυ , ωυ & , and δχυ ) and the measurements 

noises ( χe and we ) are mutually independent, the state covariance matrix Q and the 

measurement noise covariance matrix R are defined as: 

( ) ( )[ ]( )kqqqdiagk δωω &=Q ,    ( ) ( )[ ]( )krrdiagk ωχ=R  (4-117) 

where δq  and ωr  are set to be time-variant in order to implement an adaptive feature of the 

extended Kalman filter. The elements of these matrices represent the EKF tuning parameters. 

The adaptive yaw rate estimator based on the sensor fusion concept and the EKF 

methodology is shown in Fig. 4.31. The combined accelerometer measurement χm, which 

comprises the individual accelerometer measurements ayf and ayr according to Eq. (4-106) and 

the wheel speed sensor-based yaw rate estimate zwfω̂  are used as input signals to the Kalman 

filter. The initial, wheel speed measurement-based yaw rate estimate zwcω̂  is obtained by 

compensating the dominant, effective tire radii variation-related estimation errors from the 

raw estimate zwω̂  (see Subsection 4.2.2 and [48,49]). This signal is then applied as the input 

to the RBD block which detects the road bump disturbance as explained below. Within the 

RBD block, the zwcω̂  signal is filtered by a moving average filter in order to suppress 

oscillations in the estimation signal caused by the wheel speed sensor imbalance (lower 

frequencies and higher amplitudes) and tooth width errors (lower amplitudes and higher 

frequencies). 

Within the Kalman filter, the yaw rate, yaw acceleration, and accelerometers measurement 

offset ( zω , zω& , and χδ ) are defined as Kalman states. Depending on the confidence levels for 

each of the utilized sensors, the related elements of the state covariance matrix Q and 
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measurement noise covariance matrix R are adapted. Thus, when the accelerometers approach 

is to be utilized the Q∈)(kqδ  and R∈)(krω  should be set to high values (in case of low 

confidence of the wheel speed difference-measurement). On the other hand, if these Kalman 

filter tuning parameters are set to low values, the wheel speed sensors approach is used. 
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Fig. 4.31 Block diagram of adaptive EKF-based yaw rate estimator. 
 

The EKF adaptation algorithm is shown in Fig. 4.32. It switches the state variance qδ (k) and 

the measurement noise variance rω(k) from Eq. (4-117) to discrete predefined values 

according to Eq. (4-118). The variance values correspond to confidence levels of the 

individual sensor measurements. The Boolean condition function C(k) (Fig. 4.32) is defined 

based on the braking status (i.e. “Braking Status” flag, BRS(k) = 1 for braking), magnitudes 

of the yaw rate and yaw acceleration, and the road bump disturbances detection (i.e. “Road 

Bump Disturbance” status flag, RBD(k) = 1 when the road bump disturbance is detected). 
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In former equation, the subscripts L and H denote ‘low’ and ‘high’ value of the related 

parameter. The above, relatively crude logic is used here for the sake of illustration. In 

application, it may be refined by using weighting functions and similar. 
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Fig. 4.32 Block diagram of adaptation mechanism. 

 

Accelerometers are predominantly used (C(k) = TRUE) during intervals of emphasized yaw 

rate change (e.g. step-steer maneuver) and when the wheel speed sensors accuracy is 

compromised (i.e. during braking or in presence of road bump disturbance). On the other 

hand, the wheel speed sensors are utilized (C(k) = FALSE) during quasi-steady state intervals 

(e.g. steady cornering maneuvers or straight driving), especially for small yaw rates at which 

the accelerometer-based estimate drift errors are the most emphasized (see Subsection 4.3.3d). 

According to the analysis given in Subsection 4.2.1d the road bump disturbance can introduce 

a significant pulse-like error into wheel speed sensor-based yaw rate estimation. Namely, due 

to the large magnitude of such abrupt estimation errors the road-bump disturbance conditions 

must be monitored, and in the case of detection, the estimator should be switched to the 

accelerometer mode. To this end a detection algorithm and corresponding RBD status flag 

assignment have been implemented by monitoring the variance of the wheel speed sensor-

based yaw rate estimate. Note that, abrupt changes of the yaw rate during step-steer 

maneuvers also result in an increased yaw rate estimate variance. The detection algorithm 

cannot make a distinction between these two cases. However, this is not a critical constraint, 

because the accelerometer mode should be used for both cases. 

In order to detect the road bump disturbance, the signal variance )ˆ(2
zwcωσ  is calculated on-

line over a fixed time window by utilizing the delay buffer of length Nd. If the calculated 

variance is larger than the preset threshold value Vth for at least Noff < Nd consecutive samples 

the RBD status flag is set and the wheel speed sensor-based estimation is disabled. Similarly, 

the RBD flag is reset and the wheel speed-based estimation is enabled if the variance is lower 

than the threshold value for at least Non < Nd consecutive samples. 

In order to benefit from this detection algorithm the time delayed copy of the initial wheel 

speed sensor-based yaw rate estimate )(ˆ TNt dzwc −ω  should be applied to the Kalman filter 
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input. However, this delay will not have significant effect on the estimation accuracy, because 

the wheel speed sensors estimation mode is used for the slowly changing yaw rates. 

The adaptive EKF estimator performance has been analyzed by comparing the estimated yaw 

rate signal with the reference obtained from a detailed 10DOF vehicle dynamics model [23] 

for various driving maneuvers. In these simulations the realistic wheel speed sensor model 

with imbalance and tooth width errors has been used. Accelerometers offsets has been set to 

ayfo = 0.005g and ayro = - 0.003g (this corresponds to δχ = 0.0314 s-2). 

Comparison of the adaptive EKF-based estimator performance with respect to those of 

individual kinematic estimators for the step-steer maneuver is given in Fig. 4.33. In this 

maneuver the braking torque of τb = 300 Nm per wheel is applied in the time intervals 3-5 s 

and 11-14 s and the road bump disturbance is applied at t = 10 s. The wheel speed sensors-

based approach has large estimation errors during braking periods and road bump disturbance, 

while accelerometer approach has significant drift-like error, particularly at low yaw rates 

(Fig. 4.33a). 

The estimation results for the adaptive EKF based estimator (Fig. 4.33c) show that all 

dominant estimation errors are significantly reduced by applying the proposed sensor fusion 

concept. The remaining errors are mostly well within 10% of the reference value (Fig. 4.33d). 

The condition function C(t) is shown in Fig. 4.33b in order to illustrate the adaptation feature 

of the estimator. It is evident that estimator operates in the accelerometer-mode (C(t)=1) 

during time intervals with significant wheel speed sensor errors (braking, road bump, and 

transients). On the other hand, the wheel speed sensor mode is active during quasi-steady-

state yaw rate intervals only (C(t) = 0), and it enables the accelerometer drift-like error 

compensation. 
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Fig. 4.33 Illustration of adaptive EKF-based yaw rate estimator accuracy 

for step-steer maneuver. 

 

Fig. 4.34 shows the results for the case of a double lane change maneuver with emphasized 

oversteer intervals, which are characterized with large yaw rate amplitudes and lateral sliding 

of the rear (non-driven) wheels. In this maneuver, the brakes are kept inactive and no road 

bump disturbance is considered. Therefore, the wheel speed sensor-based estimator does not 

have significant estimation errors, while accelerometers still accumulate drift-like error 

(Fig. 4.34a). When using the adaptive EKF, the estimation errors are rather small, mostly 

within 0.05 rad/s, when compared to the yaw rate span of ± 1 rad/s (i.e. under 10%). 

 
Fig. 4.34 Illustration of adaptive EKF-based yaw rate estimator accuracy 

for double lane change maneuver including oversteer behavior. 
 

4.5 Summary 
The adaptive Extended Kalman Filter (EKF)-based kinematic yaw rate estimator has been 

designed. It combines two basic kinematic estimation approaches: the two-accelerometers 

approach with diagonal sensor placement, and the non-driven wheels speed sensors approach. 
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Such a combined estimator, implementing the sensor fusion approach, is aimed at taking 

advantage form the complement advantages and disadvantages of the two individual 

estimation concepts. 

In order to pave the ground for maximizing the efficiency of the fusion methodology and 

minimizing the estimation errors, a detailed analysis of the major error sources of individual 

approaches has been carried out. The major source of estimation errors for first approach is 

the accelerometer offset that causes the drift-like estimation error, while the second approach 

cannot be used during braking and it is sensitive to the tire effective radii variations and road 

bump disturbance. 

The proposed adaptive Extended Kalman Filter (EKF)-based estimator significantly reduces 

the overall estimation errors by utilizing the fusion concept of the two kinematic estimation 

approaches. Accelerometers are predominantly used during yaw rate transients and when the 

accuracy of the wheel speed sensors is compromised, while the wheel speed sensors are 

utilized during the quasi-steady-state yaw rate intervals. 

In order to further improve the reliability of the wheel speed sensors, the open-loop 

compensation of the dominant wheel speed sensors-based estimation errors has been 

implemented. These static and dynamic compensation algorithms have been derived and 

embedded into the estimator to reduce the tire deflation/wear and lateral load transfer-related 

estimation errors. Furthermore, the adaptation algorithm is equipped with the road bump 

disturbance detection feature, in order to remove the potentially large, environment-related 

wheel speed sensors-based estimation errors. 

The adaptive EKF-based estimator performance has been verified by simulation, and it has 

been shown that in various driving maneuvers the proposed estimator provides superior 

overall estimation accuracy when compared to performances of the individual kinematic 

estimators. The estimation errors are mostly well below 10% for a wide range of driving 

conditions. 
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5 Kinematic GPS/INS fusion-based 
sideslip angle estimation 

 

5.1 Background 
Existence of accurate sideslip angle information allows for implementation of a sideslip 

feedback loop in addition to the traditional yaw rate control loop (a state-space controller). 

This can improve robustness of the overall vehicle dynamics control strategy. The main 

obstacle for a successful implementation of such a state-space controller relates to difficulties 

with sideslip measurement (high cost) or estimation (inaccuracy/sensitivity). 

This Chapter deals with kinematic sideslip angle estimation based on the application of 

Kalman filter methodology and fusion of standard inertial sensors (lateral accelerometer and 

yaw gyroscope) and low-cost GPS receiver measurements. 

Recent introduction of new vehicle dynamics sensors such as Global Positioning System 

(GPS) receivers [7,13,16,56-58] or 6DOF inertial measurement units [14] opens significant 

new possibilities towards viable sideslip angle estimation based on advanced sensor fusion 

concepts utilizing the Kalman filtering methodology [2,14,30]. More precisely, the inertial 

sensors can provide fast sideslip angle estimate response, but it suffers from potentially large 

drift due to the inertial sensor offsets, and it is sensitive to modeling errors (e.g. road bank 

influence). On the other hand, the GPS can provide accurate velocity estimates, but its 

sampling rate (typically 1 Hz) is too low for vehicle dynamics control applications and it has a 

limited availability (e.g. in urban canyon regions). The fusion of these two concepts has a 

good potential to benefit from the complementary advantages of the two individual 

approaches (i.e. sensors technologies). 

The concept of GPS/INS sensor fusion proposed herein and in [54] relies on a kinematic 

vehicle model for fast sideslip angle estimation, while it utilizes slow GPS velocity 

measurements to compensate for the inertial sensor offset effect and modeling errors. The 

sensor fusion is conducted through Extended Kalman Filtering (EKF) approach [2,14,30]. The 

process model includes the kinematic vehicle model extended with random walk processes for 

accelerometer and gyro offsets. The GPS correction is conducted through model output 
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equation giving velocities in the inertial coordinate frame. The estimator has been verified by 

computer simulations using the 10DOF vehicle dynamics model [23]. 

5.2 Kinematic models and related kinematic estimators 
The vehicle body motion and related inertial sensors and GPS measurements can be described 

by a set of kinematics equations. In order to formulate these equations, which are essential for 

designing the kinematic sideslip angle estimator based on the fusion of the INS and GPS 

measurements, an appropriate coordinate frames need to be defined (Fig. 5.1). The inertial 

coordinate frame (X Y Z) is used as a reference frame, while the moving frame (Xb Yb Zb) is 

fixed to the vehicle body (Fig. 5.1a). Within the inertial frame the vehicle heading/yaw angle 

ψ , the vehicle track angle/course φ, and the vehicle velocity V are defined. The vehicle body-

fixed frame origin resides in the vehicle body center of gravity (CoG) and its axes point in the 

forward, lateral, and upward direction. Within this moving frame, the vehicle velocities (u - 

longitudinal, v - lateral, and w - vertical) and angular speeds (ωx - roll rate, ωy - pitch rate, and 

ωz - yaw rate) are defined as illustrated in Fig. 5.1b (see also Chapter 2). 
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a) b)

ϕ

 
Fig. 5.1 Definition of vehicle motion kinematic model coordinate frames (a) and kinematic 
state variables (b) with application to development of the GPS/INS fusion-based sideslip 

angle estimator. 
 

The vehicle sideslip angle β can be defined within the inertial coordinate frame (Fig. 5.1a), as 

a difference between the vehicle course and heading angles, Eq. (5-1), or alternatively it can 

be derived according to Eq. (5-2) from the vehicle velocity components defined within the 

vehicle body-fixed coordinate frame (Fig. 5.1b): 
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ψϕβ −=  (5-1) 

)(asin)(atan
V
v

u
v

==β  (5-2) 

The absolute vehicle velocity V can be expressed by means of corresponding kinematic 

variables (i.e. the velocity components), in both inertial and vehicle body-fixed frames: 

2222
yx VVvuV +=+=  (5-3) 

ϕϕββ sincossincos yx VVvuV +=+=  (5-4) 

The components of the vehicle velocity V in the inertial coordinate frame Vx and Vy can be 

derived from the vehicle velocities in the vehicle body-fixed frame (u and v) and vice versa: 

ψψ sincos vuVx −=  (5-5) 

ψψ cossin vuVy +=  (5-6) 

The considered vehicle motion kinematic model and related state variable estimator rely on 

the measurements of lateral accelerometer ay,m and yaw rate gyro ωz,m, which are placed in the 

vehicle CoG and represent the inertial sensors typically used within VDC ("Vehicle Dynamics 

Control") systems. These measurements are described by the following expressions (see [30]): 

ayoffyxzmy agwuva υθφωω +++−+= ,, cossin&  (5-7) 

axoffxxzmx agwuua υθωω ++−+−= ,, sin&  (5-8) 

ωυωωω ++= offzzmz ,,  (5-9) 

where ay,off and ωz,off , and υax,y and υω are accelerometer and gyro offsets and measurement 

noise, respectively, while φ (suspension roll and road bank) and θ (suspension pitch and road 

grade) are total roll and pitch Euler angles, respectively. For most applications the third right-

hand side term in Eq. (5-7) can be neglected, because the vertical velocity component w is 

small and it may be conveniently modeled as an additional noise component in υay. 

Furthermore, the approximation of trigonometric functions (sinφ ≈ φ and cosθ ≈ 1) can be 

applied for the small-angle assumption. Thus, the following approximate expression of lateral 

acceleration measurement holds: 

aoffyzmy aguva υφω ++++≈ ,, &  (5-10) 

The offsets of inertial sensors measurements ay,off and ωz,off  represent a dominant source of 

errors in estimating the lateral velocity v and the heading angle ψ. Namely, since these 
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estimates are obtained by direct integration of inertial measurements, they are prone to drift in 

the presence of sensor offsets. 

Apart form the inertial sensors, the GPS receiver, typically used for navigational purposes (i.e. 

vehicle position monitoring), can be utilized to obtain vehicle velocity, heading, and course 

[16,58]. Namely, the GPS receiver can provide three-dimensional vehicle velocity 

measurements in the inertial coordinate frame, N
GPSV , E

GPSV , and up
GPSV , whereof the north and 

east velocity components are of the main interest for the automotive applications. These 

velocities are given by (see Fig. 5.1b and Eqs. (5-5) and (5-6)): 

nnx
N

GPS evueVV +−=+= ψψ sincosˆ  (5-11a) 

eey
E

GPS evueVV ++=+= ψψ cossinˆ  (5-11b) 

where en and ee are measurement errors of north and east velocity components, respectively. 

The GPS-based velocity measurement errors change with satellite geometry or PDOP 

(Position Dilution of Precision) and/or multi-path errors [68,69]. Typical velocity 

measurement accuracies (1σ confidence range) are 2-5 cm/s for the horizontal velocity 

components (i.e. north and east) and 4-10 cm/s for the vertical component [16]. 

Unlike the inertial sensors, the GPS receiver provides unbiased velocity measurements. 

However, the main drawbacks of the GPS-based measurements are related to occasional loss 

of signal and a low update rate (typically 1Hz for low cost receivers) that is insufficient for 

the vehicle dynamics control applications. 

The sideslip angle estimators can be derived by utilizing the vehicle kinematic models derived 

solely from inertial sensors measurement equations, but in that case they should rely also on 

some kind of vehicle dynamics model (as proposed in [18]) in order to be able to compensate 

for drift-like estimation errors inherent to kinematic INS-based estimators. Derivation of such 

kinematic models aimed for the sideslip angle estimation, relying only on the measurements 

of the inertial sensors (i.e. accelerometers and gyros) is overviewed hereafter. 

Based on the basic kinematic equations (5-3) and (5-4) and definitions of the vehicle velocity 

components (u and v) in the vehicle body coordinate frame (see Fig.5.1) the following 

expressions can be obtained: 

β
β

sin
cos

Vv
Vu

=
=

 (5-12) 
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The following equations for the longitudinal and lateral vehicle accelerations are obtained by 

presuming zero roll and pitch angles and zero road grade and bank angle (i.e. driving on a flat 

road is assumed so that the unknown gravity acceleration components in the accelerometers 

measurement can be omitted, cf. Eqs. (5-7) and (5-8)).  

βωβββω

βωβββω

coscossin

sinsincos

VVVuva

VVVvua

zzy

zzx

++=+=

−−=−=
&&&

&&&
 (5-13) 

( ) βωβββωββ
β

coscossintan
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VVV
a

a zz
x

y ++⎥
⎦

⎤
⎢
⎣

⎡
++= &&  (5-14) 

After rearranging, Eq. (5-14) reads:  

( )βββ
β

ωβ
cossintan

tan
+

−
=+

V
aa xy

z
&  (5-15) 

If the small angle approximation applies (i.e. 1cosand,tan,sin ≈≈≈ βββββ ) the 

following expressions are obtained: 

( )12 +

−
=+

β
β

ωβ
V

aa xy
z

&  (5-16) 
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Finally, after some rearranging of the above equation, the following expression (given in [1]) 

is obtained: 

⎭
⎬
⎫

⎩
⎨
⎧

−−−
+

= z
x

z
y

V
a

V
a

ωββω
β

β 2
21

1&  (5-18) 

Presuming that β << and that ax is small or moderate, the above equation can be reduced to: 

z
y

V
a

ωβ −=&  (5-19) 

Alternatively, the same approximate expression (i.e. Eq. (5-19)) can be derived starting from: 

uva zy ω+= &  (5-20) 

u
v

u
v

≈= atanβ  (5-21) 

Presuming small or moderate longitudinal acceleration ax (i.e. small and moderate u&  typical 

for cornering maneuvers), Eq. (5-22a), obtained by differentiating Eq. (5-21), can be 

approximated according to expression (5-22b): 
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uuv &&& ββ +=  (5-22a) 

uv β&& ≈  (5-22b) 

For most driving conditions the longitudinal velocity u is much larger than the lateral velocity 

v, so that the expression u ≈ V holds, and, therefore, the sideslip rate can be obtained as: 

z
y

u
a

ωβ −=&  (5-23) 

Consequently the lateral acceleration reads: 

ua zy )( ωβ += &  (5-24) 

In the case of the vehicle spinout the second right hand side term in Eq. (5-22a) can no longer 

be neglected and consequently Eq. (5-22b) does not hold. The expression for the lateral 

acceleration can be obtained by inserting Eq. (5-22a) into Eq. (5-24) and it reads: 

uua zy && βωβ ++= )(  (5-25) 

After rearranging the equation for the sideslip rate can be obtained [10]: 

z
y

u
u

u
a

ωββ −−=
&&  (5-26) 

The basic sideslip angle kinematic estimator utilizing solely the inertial sensors and state 

space representation (5-28) of the vehicle kinematic model is originally proposed in [12]. 
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ω
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&
 (5-27) 
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&  (5-28) 

The state-space model vectors/matrices are defined as [ ]Tvu=x , [ ]Tyx aa=u , 
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B , and [ ]01=C  whereat u, ax, ay, and ωz represent the 

available measurements of the vehicle dynamics variables. This model becomes unobservable 

in the circumstances of the straight line driving (i.e. for ωz ≈ 0). For that reason the original 

estimator equation. (5-29) is in [70,71] extended with the physical model of the vehicle lateral 

dynamics given in Eq. (5-30). 
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 (5-30) 

Combining the two above defined kinematic estimators provides the more robust estimator. 

However, it still has the problem with accumulation of drift-like error due to integration of the 

inertial sensor measurement offset. 

5.3 Basic estimation concept 
The basic concept of the proposed EKF-based sideslip angle estimator [54] utilizes the sensor 

fusion concept by combining the high rate, biased inertial sensors measurements with the low 

rate, unbiased GPS velocity measurements. The considered vehicle motion kinematic model 

and the related estimator rely on the measurements of lateral accelerometer and yaw rate gyro 

(ay,m and ωz,m): 

aoffyzmy auva υω +++= ,, &  (5-31) 

ωυωωωψ ++== offzzmz ,,&  (5-32) 

where ay,off and ωz,off , and υa and υω are accelerometer and gyro offsets and measurement 

noise, respectively. The approximate equation (5-31) is derived from the exact model given in 

Eq. (5-7), by neglecting the small vertical velocity-related term ωxw and the gravity 

acceleration-related component gsinφcosθ  whose impact on the estimator performance will 

be analyzed later in Subsection 5.3.2. The kinematic model of GPS-based north and east 

vehicle velocity measurements N
GPSV and E

GPSV  is defined as: 

eey
E

GPS

nnx
N

GPS

evueVV

evueVV

++=+=

+−=+=

ψψ

ψψ

cossin

sincos
 (5-33) 

where en and ee are the measurement errors of north and east velocity components, 

respectively. 

The model equations (5-31)-(5-33) can be extended with random walk processes for the 

unknown inertial sensor offset variables ay,off and ωz,off, and rewritten into the following time-

variant continuous-time state-space process model form: 
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where the lateral accelerometer and yaw gyro measurements ay,m and ωz,m are inputs, while the 

vehicle lateral velocity v, the yaw angle ψ, and the accelerometer and gyro offsets ay,off and 

ωz,off are process state variables. The vehicle longitudinal velocity pre-estimate û  is derived 

from the non-driven (rear)2 wheel speed measurements by utilizing the following equation 

(see Chapter 4): 

)(
2

ˆ rrrl
nr

u ωω += , (5-35) 

and this pre-estimate is treated as a slowly varying parameter of the state-space process model 

given in Eq. (5-34). Therefore, the state-space model (5-34a) has a linear, time-variant form. 

On the other hand, the output equation (5-34b) is nonlinear. 

The linearized discrete-time process model needed for the EKF design can be obtained from 

the continuous-time model (5-34) by applying the Z-transform based upon the Zero-Order-

Hold (ZOH) method and linearizing the nonlinear output equation (5-30b) around the 

operating point ( 00 ,ψv ) [54]: 

( ) ( ) ( ) ( ) ( ) ( ) ( )111111 −−+−−+−−= kkkkkkk υΩuGxFx  (5-36a) 

( ) ( ) ( ) ( )kkkk exHy +=  (5-36b) 

where x(k) = [v ψ  ay,off  ωz,off ]T, u(k) = [ay,m ωz,m]T, and y(k) = [ N
GPS

E
GPS VV ]T, and the 

matrices of the discrete-time process read: 

                                                 
2 For the FWD vehicles the front wheel speeds measurements should be used and the effect of the steering wheel 
angle should be accounted for. 
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The parameter Ts denotes the sampling time of the inertial sensors measurement signals. It 

should be noted that the GPS-based vehicle velocity measurements are sampled at much 

higher sampling basis Tg = nTs (e.g. Ts = 20 ms, and Tg = 1000 ms). 

The Extended Kalman Filter (EKF) equations for a general case of the nonlinear process and 

measurement model, given in Chapter 3, applied to this particular process model read: 

( ) ( ) ( ) ( ) ( )111111 −−+−−−=− kkkkkkk uGxFx |ˆ|ˆ  (5-38a) 

( ) ( ) ( ) ( ) ( ) TT kkkkkkk ΩQΩFPFP 111111 −+−−−−=− ||  (5-38b) 

( ) ( ) ( )( )11 −−=− kkkkk |ˆ|~ xhyy  (5-38c) 

( ) ( ) ( )
( ) ( ) ( ) ( )kkkkk

kkkk TT

T

RHPH
HPK

+−
−

=
1
1

|
|  (5-38d) 

( ) ( ) ( ) ( )11 −+−= kkkkkkk |~|ˆ|ˆ yKxx  (5-38e) 

( ) ( ) ( ) ( ) ( )11 −−−= kkkkkkkk ||| PHKPP  (5-38f) 

where the output matrix H(k) is derived from Eq. (5-37) by using the current operating point 

(v0(k), ψ0(k)), as defined by a-posteriori state estimates calculated in the preceding correction 

phase of the Kalman filter algorithm: 

)1|1(ˆ)(0 −−= kkk ψψ , )1|1(ˆ)(0 −−= kkvkv . 

Assuming that the stochastic state perturbations ( vυ , ψυ , yoffυ , and offωυ ) and the 

measurement errors ( Ee and Ne ) are mutually independent, the state covariance matrix Q and 

the measurement noise covariance matrix R are defined as: 

[ ]( )offaoffv qqqqdiag ωψ=Q ,    [ ]( )n
gps

e
gps rrdiag=R  (5-39) 

where the components of matrix Q corresponds to the variance of the state perturbations and 

the components of matrix R correspond to the variance of the measurement noise. 
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In general, the Kalman filter algorithm constitutes of two distinct phases that are usually 

performed at each time step: prediction and correction (see Chapter 3). However, in this 

particular case, the inertial sensors measurements ay,m and ωz,m are sampled with the sampling 

rate Ts = 20 ms, while the GPS-based vehicle velocity measurements are sampled at a lower 

rate Tg = nTs = 1 s (i.e. the GPS measurement update is performed every n = 50 samples of the 

faster inertial sensors measurements). Since the process model outlined in Eq. (5-34) can be 

classified as a multi-rate system, the Kalman filter-based state estimation methodology for 

multi-rate and multi-resolution systems (described in more detail in [61,62]) is utilized. More 

precisely, in the case when the GPS measurements are not available the estimator performs 

the time-update according to Eqs. (5-38d)-(5-38f) where the output matrix H(k) equals zero, 

and consequently the Kalman gain matrix K(k) equals zero, as well. The estimator is executed 

in the open-loop manner based only on inertial sensor measurements. Namely, the correction 

of the a-priori estimates is excluded due to the fact that the needed recent GPS measurements 

are unavailable. Nevertheless, F and G matrices are continuously updated in order to keep the 

track of the current operating point of the process model. 

On the other hand, when the GPS measurements N
GPSV  and E

GPSV  are available (at the step nk, 

where for a given sample rates of the inertial and GPS sensors n = 50, k = 1, 2, ...), the output 

matrix H(k) is updated with respect to changes of the operating point ( )00 ,,ˆ ψvu . Based on the 

updated matrix H(k), the estimator gain matrix K(k) and the measurement update are 

calculated, and the estimated state variables are corrected in the closed-loop manner. 

5.3.1 Observability analysis 
In order to examine the feasibility of the proposed EKF-based estimator concept, the 

observability analysis has been first conducted for the utilized discrete-time process model 

given by Eq. (5-36). 

In general, for a linear time-varying discrete-time system state-space model 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )kkk

kkkkk
xHy

uGxFx
=

−−+−−= 1111
 (5-40) 

the following observation matrix Ob is defined: 

[ ]Tn 1−= HFHFHOb L  (5-41) 
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where n is the system order. The system (5-40) is observable if the observation matrix Ob has 

the number of independent rows equal to the number of the state variables (i.e. ( ) n=bOrank , 

[60]). 

The particular process state-space model (5-36), used for sideslip angle and inertial sensors 

offsets estimator design, has four states (n = 4), two inputs (p = 2), and two outputs (l = 2). 

This is a time-variant linearized MIMO system whose system matrices F, G, and H defined 

by Eq. (5-36) are functions of inertial sensors sample rate Ts, pre-estimated longitudinal 

velocity input û , and system operating point defined by vehicle lateral velocity v0 and yaw 

angle ψ0 (v and ψ are state variables). The observability matrix Ob is found to be given by: 
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The rank of this matrix has been computed by applying the singular value decomposition 

(SVD) algorithm within the Matlab Symbolic toolbox™. For the nominal case, and when the 

trivial solutions (e.g. zero velocity û  and zero operating point 00 , ψv ) are excluded, the 

algorithm computed observation matrix rank (rank(Ob) = 4 = n), what indicates that the 

considered system is observable. A numerical analysis has also been carried out in order to 

identify the conditions, related to the trivial solution, in which the system observability is 

compromised. This analysis showed that the system becomes unobservable for zero lateral 

velocity (v0 = 0, i.e. straight line driving, for which the sideslip angle is also zero). On the 

other hand, zero values of the trigonometric functions (obtained for ψ0 = k·π/2, where k = 

0,1,2…) do not affect the observability. Thus, for the zero vehicle heading (ψ0 = 0) the 

observation matrix rank is still 4 (i.e. the vehicle model remains observable). 

5.3.2 Simulation environment 
Performance of the proposed EKF-based estimator is analyzed by means of computer 

simulation. For that purpose, the simulation environment outlined in Fig. 5.2 is applied. The 
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vehicle dynamics variables needed for testing the estimator are generated “off-line” from the 

10DOF vehicle dynamics model [23]. This model provides selection of a desired driving 

maneuver (e.g. step-steer, double lane change, j-turn, etc.) and setting of specific maneuver-

related parameters (e.g. initial vehicle speed u0, steering wheel angle ϕ, etc.). The signals of 

vehicle lateral acceleration ay and the yaw rate ωz, derived from the 10DOF model, along with 

a preset sensor parameters (i.e. offsets ay,off and ωz,off  and measurement noise variances υa and 

υω), are used for generating the inertial sensors measurements signals ay,m and ωz,m (EKF 

inputs). Within the Kalman filter, the vehicle lateral velocity v, the heading/yaw angle ψ, the 

accelerometer offset ay,off, and the gyro offset ωz,off are defined as state variables (see Eq. (5-

36)). The GPS-based vehicle velocity measurements E
GPSV  and N

GPSV  are calculated from Eq. 

(5-33) by utilizing the vehicle longitudinal velocity u, lateral velocity v, and yaw angle ψ 

signals obtained from the reference 10DOF model. For this initial testing phase the error 

components ei in Eq. (5-33) are neglected. The vehicle longitudinal velocity u, comprised in 

the proposed state-space discrete-time process model equation (5-36) and used for design of 

the EKF estimator, should be estimated from the ABS wheel speed measurements ωw = [ωfl, 

ωfr, ωrl, ωrr]T (see Eq. (5-35) and [49]). However, for the initial verification of the estimator 

performance, the reference longitudinal velocity signal u obtained directly from 10DOF 

model has been used. 
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Fig. 5.2 Illustration of the EKF-based sideslip angle estimator simulation environment. 
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For testing the estimator, two distinct driving maneuvers are used: step-steer maneuver (as 

illustrated in Fig. 5.3) representing the conditions of “regular” dynamics after the step steer 

change, and double lane change maneuver including emphasized oversteer instability 

dynamics (see Fig. 5.4). The step-steer driving maneuver is characterized by the initial vehicle 

velocity u0 = 20 m/s, and quasi steady-state lateral acceleration and yaw rate of ay ≈ 5 m/s2 

and ωz ≈ 0.38 rad/s, respectively (see Fig. 5.3a). Even larger amplitudes of these variables 

(towards the stability margin) are obtained for double lane change maneuver with the same 

initial velocity u0, as shown in Fig. 5.4a. Figures 5.3b and 5.4b show the absolute vehicle 

velocity signals measured by GPS receiver, sampled with sample rate of Tg = 1 s, and used as 

the estimator inputs. 
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Fig. 5.3 Step-steer driving maneuver (uinit = 20 m/s, δs = 90°): vehicle dynamics variables 
derived from the 10DOF model (a) and calculated GPS velocity measurements signals (b). 
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Fig. 5.4 Double lane change driving maneuver (uinit = 20 m/s): vehicle dynamics variables 
derived from the 10DOF model (a) and calculated GPS velocity measurements signals (b). 
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The simulation results regarding the estimation error analysis presented in the Section 5.4 are 

obtained for the sample rate of inertial sensors measurements Ts = 20 ms and the sample rate 

of GPS-based velocity measurements Tg = 1s. The sensor offsets are set to the constant values 

ay,off = 0.05 m/s2 and ωz,off = 0.006 rad/s, if not stated otherwise. 

Initially, the estimator has been tuned and its performance has been analyzed by using the 

“idealized” basic planar vehicle model, instead of the 10DOF model, for generating the EKF 

input variables: 

z

zy uav

ωψ

ω

=

−=

&

&
 (5-42) 

thus neglecting the impact of roll and pitch dynamics. Since the basic process model (5-42) 

corresponds to the model used in the estimator design, the goal of the initial tests is to verify 

the design itself. The related simulation results for the step-steer and double lane change 

maneuvers defined above are presented in Fig. 5.5. The state and measurement noise 

covariance are set to the following values: qv = 1, qψ = 0.3, qaoff = 103, qωoff = 500, 1=n
gpsr , 

and 69.=e
gpsr  (see Subsection 5.3.1. and Eq. (5-39)). 
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Fig. 5.5 Estimated state variables and sideslip angle for the “idealized” case of basic process 
model and step steer maneuver (a) and double lane change maneuver (b) 

 

The results clearly indicate that the proposed estimator provides accurate offset estimates ay,off 

and ωz,off with the response time of approximately 10 s. The initial overshoot is larger in gyro 

offset estimate than in estimate of the accelerometer offset for both maneuvers. The lateral 

velocity estimation accuracy is also very good. Exceptionally, relatively large lateral velocity 

estimation errors appear in the initial time interval of the step-steer maneuver. These errors 

are related to the low model observability during the zero lateral velocity conditions and still 

large errors in estimated sensor offsets. Namely, it appears that the lateral velocity estimation 

becomes less sensitive to the observability issues when the sensor offsets are accurately 

estimated. 
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5.4 Estimation errors analysis and compensation 
Various sources of estimation errors has been separately identified and analyzed, by 

evaluating the performance of the proposed, basic (i.e. non-adaptive) fusion-based EKF 

estimator configuration for the driving maneuvers specified in the former Subsection and the 

full 10 DoF vehicle model. 

5.4.1 Pre-estimated longitudinal velocity related errors 
The vehicle longitudinal velocity u is not measured directly, but it is estimated from the non-

driven, free-rolling wheels rotational speeds according to Eq. (5-35), presuming the constant 

tire effective radius rn (cf. Section 4.2). However, the tire effective radius changes with the 

wheels normal load (Chapter 4). On the other hand, braking induces large longitudinal slip 

that largely affects the accuracy of longitudinal velocity estimation (detailed analysis of 

braking-related sideslip estimation errors is given at the end of this Section). In order to be 

able to analyze the effect of tire radii variations upon the EKF-based sideslip estimator 

accuracy, the tire dynamic effective radius model is integrated within the reference 10DOF 

model [49]. The true effective tire radius can be expressed as: 

dynrstrne rr ,, δδ ++=  (5-43) 

where rn is the nominal tire radius, δr,st is the static radius error (e.g. due to tire deflation), and 

δr,dyn is the dynamic radius error (e.g. due to accelerating/braking, road grade). These tire radii 

errors cause an error of the pre-estimated vehicle longitudinal velocity, which is given by: 

2
)(

ˆ
,,

rrrl
dynrstru u

uu ωω
δδε

+
+−=

−
=  (5-44) 

The relative and absolute longitudinal velocity pre-estimation errors for a double lane change 

maneuver are shown in Fig. 5.6. In the presence of both, static and dynamic tire radius errors 

the arithmetic mean of the vehicle velocity pre-estimation relative error for this maneuver 

equals 0.3% (blue trace in Fig. 5.6b). However, if the tire radius static error is 

compensated/set to zero (δr,st = 0), the velocity estimation error can be significantly reduced 

(red trace in Fig. 5.6). 
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Fig. 5.6 Longitudinal vehicle velocity estimation errors for double lane change maneuver 
with emphasized oversteer: absolute errors (a), relative (b). 
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Fig. 5.7 Impact of the inaccuracy of pre-estimated vehicle longitudinal velocity on the 

estimator performance with respect to the process state variables (a) and sideslip angle (b) 
estimation for double lane change maneuver. 

 

The relatively small vehicle velocity pre-estimation error of only 0.3% can still induce 

significant lateral velocity/sideslip angle and sensor offsets estimation errors [14]. Thus the 

vehicle longitudinal velocity should be estimated separately by a dedicated kinematic 

estimator, in order to enable sufficient accuracy of the velocity pre-estimate signal needed for 

superimposed sideslip angle estimator. An initial analysis indicated that the vehicle velocity 

pre-estimation errors were predominantly propagated to the final sideslip angle estimation 

errors through the process output equation (5-36b) during the measurement update phase. 
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Therefore, the process output equation, constituting the GPS velocities measurement model 

illustrated in Fig. 5.8, is subject to a more detailed simulation analysis presented below. 
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Fig. 5.8 Block diagram of GPS velocity measurements reference and open-loop 

estimation error model. 
 

The reference GPS velocities N
GPS

E
GPS VV and are obtained from the GPS velocity measurement 

model (i.e. Eq. (5-33) whereat the measurement errors ee and en are set to zero), with the 

vehicle dynamics variables u, v, and ψ obtained directly from the reference 10DOF vehicle 

dynamics model. On the other hand, the GPS velocities estimates N
GPS

E
GPS VV ˆˆ and  are 

calculated by using the same GPS velocity measurement model, but this time the estimates of 

the vehicle dynamic variables ψ̂,ˆ,ˆ andvu  are used instead. These open-loop estimates have 

been derived by using the simple vehicle kinematic model defined by Eqs. (5-31),(5-32), and 

(5-35) and utilized by the EKF estimator. The GPS velocity open-loop estimation errors 

( ) ( )N
GPS

E
GPS VV εε and  represent the outputs of the above model. 

Firstly, in order to analyze to which extent the difference between the used vehicle models 

(i.e. the reference 10DOF model and the simple kinematic one) induces the open-loop GPS 

velocity estimation errors, the sensor offsets and velocity estimation error are set to zero (i.e. 

ayoff = 0, ωzoff = 0, and uu =ˆ ). In this case the GPS velocity estimation errors arise only from 

the difference between the reference values of the vehicle lateral velocity and heading angle 

(v and ψ) and the related estimates ψ̂,ˆ andv  obtained from the model. These estimation errors 

are illustrated in Fig. 5.9b by green dashed line. The said errors are emphasized during 

dynamic conditions and are very small in steady-state intervals. In the considered double lane 

change maneuver, the GPS velocity estimation errors are in the range of 1-2% of the reference 

signals given in Fig. 5.9a. 
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Fig. 5.9 Impact of the vehicle longitudinal velocity pre-estimation error on open-loop 
estimation accuracy of the vehicle velocity components in inertial coordinate frame: reference 
velocities measured by single GPS receiver (a), and GPS velocities absolute estimation errors 

in relation to effective tire radii errors (b). 
 

Moreover, the effect of the vehicle velocity pre-estimate errors, related to both static and 

dynamic tire effective radius errors, on the accuracy of the GPS velocity estimates is also 

shown in Fig. 5.9b (red and blue dashed lines). It is evident that the vehicle velocity pre-

estimate errors due to static tire radii errors have a dominant effect upon the accuracy of the 

GPS velocity estimation even during steady-state intervals. 

In the next step the inertial sensor offsets, as a dominant source of errors, are included in the 

GPS velocity open-loop estimation error model given in Fig. 5.8. The related GPS velocity 

estimation errors for the ayoff = - 0.05 m/s2 and ωzoff = 0.006 rad/s are shown in Fig. 5.10a for 

the same maneuver from Fig. 5.9a. When compared with the inertial sensor offsets effect, the 

impact of the vehicle longitudinal velocity pre-estimation errors on the GPS velocities open-

loop estimates can be neglected. Furthermore, the open-loop sideslip angle estimates shown in 

Fig. 5.10b have emphasized drift and quickly accumulate large errors. The impact of the tire 

effective radii-related longitudinal velocity pre-estimation errors on the open-loop sideslip 

angle estimation accuracy is minor (i.e. sensor offset effect is much more emphasized). 
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Fig. 5.10 Open-loop GPS velocities estimation errors (a) and open-loop vehicle sideslip 

angle estimates (b) (inertial sensor measurement offsets included). 
 

Finally, the impact of both inertial sensors offsets and longitudinal velocity pre-estimation 

errors on the performance of the proposed EKF sideslip angle estimator is analyzed (closed-

loop estimation). The estimates of the sideslip angle and process state variables for the double 

lane change maneuver without any a-priori information of the sensor offsets (i.e. initial states 

of all state variables are set to zero value), are shown in Fig. 5.11. 
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b 

Fig. 5.11 Illustration of estimation errors due to the tire radii-related longitudinal velocity 
inaccuracies and inertial sensor offsets: process model state estimates (a) and vehicle sideslip 

angle estimate (b) (no a-priori knowledge on state variables including offsets). 
 

5.4.2 GPS velocity measurements related errors 
The GPS velocity measurement errors, alike the longitudinal velocity pre-estimation errors, 

propagate to the sideslip angle estimate through the process model output equation (5-34b) 
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and they result in an increased a-priori estimation errors ( )1−kky |~̂ , defined by Eq. (5-38c). 

In order to simulate these effects, the GPS velocity errors are modeled as Gaussian random 

variables with the standard deviation of 5 cm/s (correspond to typical accuracy of low cost 

receivers [16]). The corresponding sideslip angle estimates for the double lane change and 

double step steer maneuvers are shown in Fig. 5.12. These results are obtained for the non-

adaptive estimator with the slow EKF tuning, zero static tire radii variations-related 

longitudinal velocity pre-estimation errors, and accurate a-priori information of the inertial 

sensor offsets. They indicate that the GPS velocity measurement errors can induce sideslip 

angle estimation errors up to 3 degrees. 
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Fig. 5.12 Impact of GPS velocities random errors on accuracy of sideslip angle estimation for 
double lane change maneuver (a) and double step steer maneuver (b). 

 

Another source of the sideslip angle estimation errors is related to GPS velocity measurement 

latency. Namely, the GPS receivers measure the velocity by internal averaging of the velocity 

data calculated at a higher rate within the receiver sample time period. This gives a theoretical 

velocity-measurement latency of a half of the sample time period [61]. Furthermore, the finite 

time required for processing and transmission of the receiver data may contribute to the total 

latency [61,62]. 

In order to emulate this GPS measurement latency, the reference GPS velocity signals 

obtained from Eq. (5-33) at a higher sample rate of 1/Ts = 50Hz are filtered by an moving 

average filter, thus calculating the arithmetic mean of the reference signal on the 1 Hz basic 

sample rate. It has been found out that the measurement latency is manifested in a 

measurement delay of Tg/2 = 0.5 s and certain response damping (e.g. the effect of the 

measurement latency upon the GPS velocity signals for a double lane change maneuver is 



                                                                      Kinematic GPS/INS fusion-based sideslip angle estimation 

 
 

99

illustrated in Fig. 5.13). This latency in the GPS measurement can apparently represent a 

major source of the sideslip estimation errors, because it causes large velocity measurement 

dynamic errors. 
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Fig. 5.13 Effect of the GPS velocity measurement latency for the double lane change 

maneuver. 
 

The GPS latency-related estimation errors for the double lane change maneuver are given by 

the red trace line in Fig. 5.14. As anticipated, the estimation errors are unacceptably high 

during transient conditions, when the GPS latency errors are emphasized. These large 

estimation errors of sideslip angle are caused by inaccurate measurement update and related 

correction relying on faulty a-priori prediction error (5-38c). Namely, the current 

measurements y(k) represent, in fact, a filtered and delayed copy of the original measurements 

and do not match the current a-priori output estimate ( )1−kk |ŷ . Thus, in order to 

compensate for the GPS latency errors, the a-priori output estimates should be synchronized 

with the measurements. Presuming that the GPS measurement latency of one half of the 

sample time is time invariant, the same moving averaging filter as for the GPS velocity 

measurements, should be applied to the output estimates. Thus, the GPS measurements and 

output estimates are effectively synchronized and correct a-priori prediction error can be 

calculated as: 

( ) ( ) ( )11 −−=− kkkkky |ˆ|~̂ yy  (5-45) 

were ( ) ( )∑
=

−−−=−
n

l

lklk
n

kk
1

111 |ˆ|ˆ yy  and 50== sg TTn . The efficiency of such 

compensation action is illustrated in Fig. 5.14 (green trace line). 
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Fig. 5.14 Impact of GPS velocity measurement latency on sideslip angle estimation without 

and with latency compensation action applied. 
 

5.4.3 Errors related to roll and pitch dynamics 
In order to determine the impact of unmodeled roll and pitch dynamics on the estimator 

accuracy, the more realistic 10DOF reference vehicle model [23] is used instead of the simple 

planar model (5-42) (see Fig. 5.2). The related simulation results for step steer and double 

lane change driving maneuvers and two sets of state covariance components (i.e. the Kalman 

filter tuning settings) are shown in Fig. 5.15. 
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Fig. 5.15 Impact of unmodeled vehicle roll and pitch dynamics on estimation accuracy of the 

process state variables and sideslip angle for step steer maneuver (a)  
and double lane change maneuver (b). 

 

The vehicle lateral velocity/sideslip angle estimation accuracy is, unlike the vehicle heading 

estimate, reduced compared with the “idealized” case in Fig. 5.5. This holds especially for the 

step-steer maneuver (Fig. 5.15a) characterized by very small lateral velocities. From the 

double lane change maneuver results (Fig. 5.15b) it is evident that the lateral velocity/sideslip 

angle estimates are more accurate during transient than steady-state conditions. Moreover, 

when comparing the two maneuvers, it can be noted that the higher estimation accuracy is 

achieved for larger values of the lateral velocity, because in such cases the ratio of the lateral 

and longitudinal velocities is conveniently larger. The estimation accuracy of the sensor 

offsets is also affected by the roll and pitch related disturbances, where the gyro offset 

estimation is more critical. However, the sensor offsets are typically slowly varying with 

temperature and aging. Thus, by increasing the offsets estimation equivalent time constants 
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the impact of roll and pitch disturbance on the offsets estimation accuracy should be 

substantially decreased. This is done by decreasing the corresponding (offset-related) state 

covariance matrix coefficients. As shown in Fig. 5.15, by decreasing of the offsets covariance 

coefficients qaoff and qωoff the oscillations in estimated offsets signals are reduced, especially 

for the double lane change maneuver. However, for the double lane change maneuver the 

gyro offset estimate signal is still oscillatory, thus requiring further decrease of the 

corresponding covariance parameter qωoff  and corresponding slow-down the offset estimate 

response. 

5.4.4 Braking related errors 
Braking is another source of estimation errors, which are caused by inaccuracy of longitudinal 

velocity pre-estimate û  due to a large longitudinal slip. The impact of braking on the 

accuracy of sideslip angle estimation is illustrated in Fig. 5.16 on an example of a braking in 

turn maneuver with the initial velocity u0 = 25 m/s, steering wheel angle δs = 30°, and braking 

torque τb = 300 Nm per wheel initiated at t = 15 s. The estimator performance is analyzed for 

the cases of dynamic (red trace) and static (blue trace) tire radii variations. The offsets are 

taken to be initially known. During a pure cornering over a period (t = 2÷15s in Fig 5.16), the 

longitudinal velocity pre-estimation error due to dynamic radii variations is less then 0.1%, 

while for the static radii error the estimation error is approximately 0.4%. However, the errors 

are significantly increased during braking, which results in significant sideslip angle 

estimation inaccuracy, as shown by solid lines in Fig. 5.16b. 

]s[t  
Fig. 5.16 Braking-related errors of pre-estimated longitudinal velocity (a) and corresponding 

sideslip angle estimator responses (b). 
 

Here, the compensation of static tire radii variations-related errors by itself would not provide 

significant gain under the braking conditions. On the other hand, it is difficult to compensate 
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for the braking-related estimation errors, because the exact braking force and related tire slip 

could not be reliably determined due to uncertainties of the brake model and longitudinal tire 

static curve. Therefore, during the temporary braking intervals, the sideslip angle should be 

estimated in the open-loop mode using inertial sensors measurements only, without 

performing the GPS-based measurement correction. More precisely, the open-loop estimation 

mode can be activated by setting the observation matrix H to null matrix (the Kalman gain 

matrix K is also null matrix), upon detection of pressed braking pedal, thus making the 

measurement correction inactive. The sideslip angle estimates obtained by implementing such 

an intervention are illustrated by dashed traces in Fig. 5.16b. These results indicate that the 

open-loop estimation, applied during braking, eliminates the braking-related estimation errors. 

 

5.4.5 Road bank related errors 
The road bank angle φ also represents a major source of estimation errors, because the effect 

of the gravity acceleration component gsinφ ≈ gφ (see Eq. (5-9)) measured by the lateral 

accelerometer has not been included in the process model given by Eq. (5-34). Thus, the road 

bank represents an unmodeled disturbance for the estimation of the sideslip angle β. 

The road bank impact has been analyzed for the step-steer maneuver (steering wheel angle δs 

= 50° and initial velocity u0 = 20m/s) on the banked road with stepwise bank angle changes 

up to ±15° (see black line trace in Fig. 5.18a). The corresponding sideslip estimate is shown 

in Figure 5.18b (red dashed line), and it is obtained for accurate vehicle longitudinal velocity 

pre-estimate and correct a-priori information on inertial sensor offsets. According to these 

results, the road bank causes unacceptably high sawtooth-like oscillations in the estimated 

signal. These oscillations are directly induced by a large gravity acceleration component 

acting as additional sensor offset φsin,
*

, gaa offyoffy += . Namely, the difference between the 

estimated accelerometer offset and the actual value ay,off
* causes a drift in the sideslip angle 

estimate during the open-loop estimation between the two consecutive GPS velocity 

measurements. 

In order to reduce the road bank impact on the estimator accuracy, the gravity component, 

measured by the lateral accelerometer, should be estimated. Such estimation may rely on the 

following expression: 

( )uvaaga offzmzoffymygravy ˆˆˆˆˆˆ ,,,,, ωωφ −−−−== &  (5-46) 
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which is obtained from Eq. (5-31) after neglecting the measurement noise component υa. 

However, in order to avoid additional closed loops in sideslip estimator and potential stability 

issues, the above gravity estimate equation is simplified and only the inputs of the original 

EKF estimator are used. The sensor offsets are relatively small when compared to the gravity 

acceleration component even for small bank angles, and also v&  is considered to be small for 

steady-state driving conditions. In addition, the contribution of dynamic component v&  to the 

estimated, relatively slow gravity acceleration component can be effectively filtered by 

applying a low pass filter. These approximations result in the simple road bank-related 

acceleration term estimator given by the following expression and illustrated in Fig. 5.17, and 

used for compensation of the related sideslip angle estimation errors: 

( ) ( )uasGa mzmyLPgravy ˆˆ ,,, ω−⋅=  (5-47) 

mya ,

LP - filter

+

x
mz,ω

û

-

+

-

*
,myagravya ,ˆ

 
Fig. 5.17 Elimination of road bank-related gravity acceleration component from 

accelerometer measurement. 
 

The results of the estimated road bank angle ga gravy ,ˆˆ =φ  for the considered step-steer 

maneuver on a banked road are given in Fig. 5.18a (red dashed line). The observed bank 

estimation error, of approximately 1 degree is primarily induced as a result of neglecting the 

ωz,off u acceleration component. 

The gravity acceleration component estimate (5-47) is subtracted from the original 

accelerometer measurement ay,m, as illustrated in Fig. 5.17 and *
,mya  is then used by the 

sideslip angle estimator instead of the raw measurement. According to the simulation results 

shown in Fig. 5.18b, this compensation method effectively suppresses the drift-like 

oscillations in the sideslip estimation signals and confines the estimation error within 1.5 deg 

for the considered, quite excessive road bank disturbance of 5-15 degrees. 
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Fig. 5.18 Illustration of road bank-related sideslip estimation errors and related 

compensation algorithm: road bank angle estimate (a) and sideslip angle estimate (b). 
 

Alternatively, the road bank angle may be estimated by using a dedicated estimator by 

utilizing the measurements of additional sensors (e.g. the roll rate gyro and/or vertical 

accelerometer) or the vehicle dynamics model and standard set of vehicle dynamics sensors, 

as documented in [30,48]. In that case the estimated road bank/roll angle could be integrated 

in the state-space process model in Eq. (5-34) and added as additional input of the EKF-based 

sideslip estimator in order to account for the superimposed gravity acceleration component. 

5.5 Design of the adaptive estimator 
The proposed basic EKF estimator design has been extended by implementing an adaptation 

algorithm in order to provide a good trade-off between fast convergence of inertial sensors 

offset estimates and a low level of their steady-state perturbations. The adaptation algorithm is 

implemented through a change of the elements of state covariance matrix Q. During the 

highly dynamic driving maneuvers the estimator should be made slower in order to decrease 

perturbations in sensor offsets estimates and suppress the related sideslip estimation errors. 

On the other hand, the faster tuning is more appropriate for quasi-steady state maneuvers, in 

order to speed up the convergence of the sensor offsets estimates under the conditions of 

decreased estimator excitation (see Fig. 5.19). Consequently, the two sets of state covariance 

parameters are predefined: QD for slow EKF tuning and QS for fast EKF tuning. 
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Fig. 5.19 Illustration of impact of state covariance matrix tuning on sensor offset estimation. 

 

Fig. 5.20 shows a simple adaptation procedure for selecting the appropriate covariance matrix 

based on the vehicle dynamics conditions. The required information about the vehicle 

dynamics conditions are obtained by monitoring the lateral accelerometer measurement ay,m 

and the estimate of v& . This estimate is derived from the EKF a-priori and a-posteriori 

estimates of the vehicle lateral velocity, according to: 

( ) ( ) ( )
sT

kkvkkvkv 111 −−−−
=

|ˆ|ˆ
&̂  (5-48) 

where Ts is the inertial sensors measurement sampling rate. 
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Fig. 5.20 Estimator adaptation algorithm. 

 

The basic idea of the adaptation procedure is to set the flag cadapt if the absolute value of 

estimated lateral velocity derivative ( )kv̂&  is higher than some threshold value thv&  for a period 

longer than a preset time Ton. Namely, the lateral velocity time derivative v&  represents a good 

indicator of dynamic driving conditions (i.e. it can be quite large during transients, while it is 

approximately zero during quasi steady-state conditions). On the other hand, cadapt is reset if 

both ( )kv̂&  and ( )ka my ,  are less than their threshold values thv&  and thya , , respectively, for a 
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period longer than Toff. The additional condition related to the lateral acceleration mya ,  is used 

in order to prevent resetting the flag cadapt in the case of oversteer conditions that are 

characterized by relatively low v&  (compared to, e.g. step steer maneuvers) but high ya . 

Hence, in transients when cadapt = TRUE, the covariance matrix QD is selected to limit the 

perturbations in estimated signals, while under the quasi-steady-state conditions, when cadapt = 

FALSE, the QS is utilized to obtain faster convergence of estimates towards true values. The 

adaptation procedure should abruptly detect an extensive dynamic behavior to timely slow 

down the estimator, while switching to the steady-state mode should be made more 

conservative in order to avoid chattering in adaptation. Thus, the timers parameters should be 

set such that Ton << Toff. 

5.5.1 Evaluation of the adaptive estimator 
In order to illustrate the effectiveness of the proposed adaptive estimation approach, the 

sideslip angle estimate of the adaptive EKF estimator has been compared to the ones obtained 

for the slow and fast-tuning non-adaptive case. The estimation results are shown in Fig. 5.21 

for double lane change and double step-steer maneuvers, and the following tuning parameters: 

Ton = 60ms, Toff = 400ms, thv& = 0.2 m/s2, and ay,th = 6 m/s2. The response of the adaptation flag 

trace cadapt is included in the plots. The results are obtained for the case of no a-priori 

information on sensor offsets and with only dynamic tire radii variations-related velocity pre-

estimation errors taken into account. 
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Fig. 5.21 Comparison of sideslip estimation performance without and with estimator 

adaptation applied: for double lane change maneuver (a) and double step steer maneuver (b). 
 

The comparative responses indicate that the adaptive estimate represents a good trade-of 

between the two non-adaptive estimates. Namely, the adaptive estimate provides a faster 

convergence of the estimated sideslip values than the slow non-adaptive EKF. On the other 

hand the steady-state error after the emphasized transient (e.g. for 15s < t < 20s in Fig. 5.21a) 

is smaller than with the fast non-adaptive EKF estimator. The estimation errors in the initial 

period are due to initially inaccurate offset estimates. 

The final results, given in Fig. 5.22, are obtained for the fully tuned and compensated adaptive 

sideslip estimator in the presence of longitudinal pre-estimation errors (due to the dynamic 

tire effective radii discrepancies) while presuming accurate a-priori information on inertial 

sensor offsets (i.e. the estimator has been active long enough to converge to the true offset 

values). The estimator performance is tested for the double lane change maneuver and double 

step-steer maneuver on a flat road. 
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Fig. 5.22 Final results of tuned adaptive EKF-based sideslip angle estimator performance for 
double lane change maneuver (a) and double step steer maneuver (b). 

 

The estimator provides reasonably accurate sideslip angle estimates (the error is less than 1,5° 

on a large sideslip angle span of ±20°). Generally, the estimator has been found to perform 

better in highly dynamic maneuvers with relatively short intervals of the steady-state driving 

conditions. Namely, the accumulated errors are more difficult to correct during the steady-

state conditions (especially during straight line driving), because of the lack of process model 

excitation. 

5.6 Summary for GPS/INS kinematic approach 
An adaptive EKF-based sideslip angle estimator has been proposed. It combines the low 

sampling rate GPS-based vehicle velocity measurements with the high sampling rate inertial 

sensors measurements (lateral acceleration and yaw rate), in order to compensate for the drift-

like sideslip angle estimation errors caused by the inertial sensor offsets. 

The simulation analysis has indicated that the estimator can be rather sensitive to small errors 

of pre-estimated longitudinal vehicle velocity, caused by the static and dynamic tire radii 

variations. Dominant estimation errors related to static tire radii variation can be effectively 

compensated during straight driving by comparing the GPS velocity and wheel speeds 

measurements. The remaining errors related to dynamic tire radii variations are relatively 
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small. Further refinements of the longitudinal velocity pre-estimation may include the 

dynamic errors compensation proposed in Chapter 4, as well. On the other hand, braking can 

cause large sideslip angle estimation errors, because of relatively large longitudinal velocity 

pre-estimation errors caused by the tire longitudinal slip. In order to compensate for these 

errors, the sideslip is estimated in the open-loop mode during braking intervals, because of 

uncertainty of slip estimation. 

GPS measurement latency represents another source of the sideslip estimation errors, because 

it causes large transient velocity measurement errors. However, presuming that this latency is 

constant it can be compensated by introducing the same latency (averaging) in the EKF 

prediction error calculation. 

Road bank represents a potentially large unmodeled disturbance that may cause significant 

sideslip estimation errors. Namely, the road bank induces high drift-like behavior of the 

sideslip estimate, related to the additional accelerometer offset caused by gravity acceleration 

component. In order to reduce the estimation errors, two compensation methods have been 

suggested. First method modifies the EKF tuning (speeds up the accelerometer offset 

estimation) in order to account for the additional offset. However, this method becomes 

ineffective in the case of averaging of the EKF output estimates needed for compensation of 

the GPS measurement latency-related errors. The second compensation approach, which is 

based on estimation of the bank-related gravity acceleration component, has been proven to 

be rather effective. 

The designed adaptation algorithm modifies the state covariance matrix in order to account 

for the changes in the vehicle dynamics conditions. More specifically, two sets of state 

variables covariance parameters are used; one for quasi-steady-state conditions and other for 

intense dynamic behavior. The sensor offset estimation is made faster during the steady-state 

conditions and slower during transients. Adaptation relies on the measured lateral acceleration 

and estimated time derivative of the lateral velocity signals. This procedure enables adjusting 

optimal estimator performance with respect to estimator response time and damping of 

oscillations in the estimated sensor offsets and consequently the magnitude of errors in 

sideslip angle estimate. 

Finally, the performance of fully tuned, adaptive EKF-based estimator has been tested for the 

double lane change and double step-steer maneuvers. The simulation results have shown that 

the sideslip estimation error of less than approximately 2 deg is achievable for a wide range of 

non-braking operating conditions, provided that the static tire radii, bank, and GPS 
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measurement latency errors are accurately pre-compensated and the offset estimates transients 

are settled. 
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6 Sideslip estimator based on 
nonlinear vehicle dynamics and 
stochastic tire models 

6.1 Background 
The sideslip angle estimator based on a nonlinear vehicle dynamics model that utilizes 

stochastic, random walk-type models of the tire forces has been initially proposed in [55]. The 

estimator has then been extended, refined, and validated as described in detail hereinafter. 

Such approach eliminates sensitivity of the sideslip angle estimation to uncertainties of the 

deterministic tire model parameters, and makes the laborious and costly tire model 

identification unnecessary [18]. The proposed estimator has been verified through off-line 

processing of the experimental data recorded on a test vehicle, equipped with a high-

performance inertial measurement unit (IMU), during various realistic driving maneuvers 

performed on low-µ and high-µ surfaces (e.g. snow, ice, concrete surfaces). 

The estimator performance has been first analyzed for the case of utilizing a high-precision 

inertial measurement unit with two antenna GPS receiver, in order to verify the proof of 

concept. Later, the deterioration of the estimator performance has been analyzed for the case 

of utilizing only the standard set of vehicle dynamics sensors. The main sources of the 

estimation errors have been identified and adequate error compensation methods have been 

proposed, when applicable. In order to obtain more accurate estimates, the tuning of the state 

covariance matrix has been conducted and analyzed, and finally an adaptive extended Kalman 

filter-based estimator configuration has been designed. 

6.2 Basic estimation concept 
The single-track nonlinear vehicle dynamics model with five degrees of freedom (see Chapter 

2, Fig. 2.3) has been utilized as a basis for the design of sideslip angle estimator. This vehicle 

dynamics model is defined by the following expressions: 

[ ] zxryfxf vFFF
m

u ωδδ ++−= sincos1
&  (6-1) 

[ ] zyrxfyf uFFF
m

v ωδδ −++= sincos1
&  (6-2) 
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( )[ ]yrxfyf
z

z cFFFb
I

−+= δδω sincos1
&  (6-3) 

[ ]bfwxf
w

fw rF
I

τω −=
1

,&  (6-4) 

[ ]brwxr
w

rw rF
I

τω −=
1

,&  (6-5) 

where u and v are the longitudinal and lateral velocities, respectively, ωz is the yaw rate, ωw,f 

and ωw,r are the front and rear rotational wheel speeds, δ is the front wheel steering angle, b 

and c denote distances of the front and rear axles from the vehicle CoG, respectively, rw and 

Iw are the wheel radius and the wheel moment of inertia, τbf and τbr are the front and rear 

braking torques (see Fig. 2.3). The tire forces Fxf, Fxr, Fyf, and Fyr are modeled as first-order 

random walk-type stochastic variables. 

The state vector x of the continuous-time state-space model representation (Eq. (6-6)) of the 

utilized 5DoF vehicle dynamic model (6-1) to (6-5), is augmented with four additional state 

variables corresponding to the front and rear axles lumped tire forces.  

eCxy
WυBuxΦx

+=
++= )(&

 (6-6) 

The input vector u comprises the front and rear wheels braking torques, and the output vector 

y comprises the measurements of yaw rate, front and rear wheel speeds, lateral and 

longitudinal accelerations and vehicle longitudinal velocity. The input vector u, the state 

vector x, and the measurement vector y, are defined as: [ ]T
brbf ττ=u , 

[ ]Tyryfxrxfrwfwz FFFFvu ,, ωωω=x , and [ ]T
yxrwfwz uaa,, ωωω=y . 

The input and output matrices read: 
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Furthermore, the state noise matrix is equal to unit matrix ( 99xIW = ), and front wheel 

steering angle δ has been considered as a time variant model parameter in the state transition 
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function Φ(x) and output matrix C, updated to an instantaneous value of the steering angle 

measurement at each time step tk. 

Note that the model nonlinearities reside only in the state equation, more precisely in Eqs. (6-

1) and (6-2) through the terms vωz and uωz, while the output equation (i.e. output matrix C) is 

linear function of the state variables. Therefore, in order to implement the Kalman filter, the 

state-space model nonlinear state transition function Φ(x) needs to be linearized around the 

operating point (u0k, v0k, ωz0k) at each time step tk in order to derive the state transition 

matrix A: 

k
k

tt =
=∂

∂
=

0xxx
xΦA )(  (6-7) 

The observability of the linearized state-space model (6-6) has been tested by means of 

algebraic analysis of the observability matrix [ ]Tn 12 −= CACACACOb L  and by 

calculating its rank [51]. This analysis has shown that the considered model becomes 

unobservable in the case of near zero yaw rate and lateral acceleration (i.e. in straight driving 

conditions). However, in these conditions the sideslip angle also equals zero, so that the 

estimator should be switched off in order to prevent the estimation error build-up. 

The discrete-time vehicle dynamics model, needed for implementation of EKF-based 

estimator, is obtained from continuous-time model given by Eq. (6-6) after applying Z-

transform based upon the Zero-Order-Hold (ZOH) method: 

)()()()(

)1()1()1()1()1()1()(

kkkk

kkkkkkk

exHy

υΩuGxFx

+=

−−+−−+−−=
 (6-8) 

where the discrete-time model matrices have been derived numerically from the following 

approximate expressions [38]: 

s
T Te s AIF A +≈= , sTBG ≈ , sTWΩ ≈  and H = C. 

Consequently the discrete model matrices read: 
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The Kalman filter equations in this particular case read (cf. Eqs. (3-26) to (3-31)): 

( ) )1()1()1|1(ˆ)1|(ˆ −−+−−=− kkkkkk uGxfx  (6-9) 
TT kkkkkkk ΩQΩFPFP )1()1()1|1()1()1|( −+−−−−=−  (6-10) 

( ))1|(ˆ)()1|(~ −−=− kkkkk xhyy  (6-11) 

( ) ( ) [ ] 1)()()1|()()()1|( −
+−−= kkkkkkkkk TTT RHPHHPK  (6-12) 

)1|(~)()1|(ˆ)|(ˆ −+−= kkkkkkk yKxx  (6-13) 

)1|()()()1|()|( −−−= kkkkkkkk PHKPP  (6-14) 

 

Assuming that the stochastic state perturbations and the measurement errors are mutually 

independent, the state covariance matrix Q and the measurement noise covariance matrix R 

are defined as: 

[ ]( )FyrFyfFxrFxfwrwfzvu qqqqqqqqqdiag ωωω=Q  
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[ ]( )uayaxwrwfz rrrrrrdiag ωωω=R  

where the components of matrix Q correspond to the variance of the state perturbations and 

the components of matrix R correspond to the variance of the measurement noise. 

The sideslip angle estimate has been derived by using the estimated vehicle lateral and 

longitudinal velocities (i.e. the elements of the a-posteriori updates of the state vector 

estimate), according to the following expression: 

( ) ( )
( )⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=

kku
kkv

k
|ˆ
|ˆˆ atanβ  (6-15) 

6.3 Simulation environment 
Performance of the proposed EKF-based sideslip angle estimator is first analyzed by means of 

computer simulation. For that purpose, the simulation framework outlined in Fig. 6.1 is 

applied, based on the 10DoF vehicle dynamics model [4], implemented in Matlab 

SimulinkTM. This model enables selection of different driving maneuvers and setting of 

relevant maneuver parameters in order to generate the reference vehicle dynamics signals and 

inputs for the single-track 5DoF model used for estimation (i.e. front wheel steering angle δ 

and braking torques [ ]T
brbf ττ=bT  for front and rear axles. Initially, the 5DoF model 

outputs have been used as measurements signals y for the EKF estimator, as illustrated in Fig. 

6.1, in order to test its nominal performance and emphasize the difference between the 

underlying 5DoF and referent 10DoF vehicle dynamics model. The presented simulation 

results correspond to the high-mu conditions (µ = 1). 

 
Fig. 6.1 Illustration of the EKF estimator simulation environment. 
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Typical simulation results for a double step-steer and braking in turn maneuvers are presented 

in Fig. 6.2a and Fig. 6.2b, respectively. The double step steer maneuver is characterized by a 

high peak lateral acceleration of 8.6 m/s2, the initial velocity of 72 kph, and no braking action. 

Braking in a turn maneuver is carried out for the initial velocity of 90 kph, the braking torques 

of 300Nm per wheel, and the steering wheel amplitude of 28 deg, characterized by the peak 

lateral acceleration of 4.2 m/s2 and small sideslip angle values. The sideslip angle estimate has 

been compared with the actual outputs of the underlying 5DoF model and the true reference 

yielded from the 10DoF vehicle dynamics model. Based on the simulation result in Fig. 6.2, it 

can be concluded that the estimate coincide well with the reduced dynamics model output 

while discrepancies between the estimate and 10DoF reference are clearly the result of an 

unmodeled roll and pitch dynamics. 

 
Fig. 6.2 Simulation results of the sideslip angle estimation for double step steer maneuver (a) 

and braking in a turn maneuver (b). 
 

Impact of the state covariance matrix Q tuning on the convergence of the Kalman filter 

sideslip angle residuals (i.e. the estimation errors) are illustrated in Fig. 6.3 for the step-steer 

maneuver with the following parameters: µ = 0.6, u0 = 90kph, and ∆δSW = 80 deg (index SW 

indicates the steering wheel). The large initial sideslip angle estimation error has been 

generated by setting the faulty, nonzero initial value of the lateral velocity state variable, 

while the estimates of the other state variables have been initialized to their true values. The 

simulation results indicate that the convergence rate of the sideslip angle estimator is 

primarily influenced by the quality of excitation [60] (i.e. in conditions of high excitation of 

the lateral vehicle dynamics, t > 3s, a fast convergence of the estimation residuals is observed) 

and state covariance matrix tuning (i.e. higher convergence rates are obtained for larger values 

of individual elements of the Q matrix, but at the cost of increasing the noise in the estimation 
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signal, not included in this simulation). Based on this analysis, the nominal setting (10qv0) of 

the state covariance matrix Q has been set for further analysis and experimental validation of 

estimator performance. 

 
Fig. 6.3 Illustration of the impact of the state covariance matrix tuning on the convergence of 
the estimation errors: reference sideslip angle (a), estimation errors vs. initial condition offset 
error magnitude for qv0 (b), and estimation errors for different covariance matrix settings (c). 
 

6.4 Experimental results for high-performance IMU measurements 
The estimator performance has been verified by running the estimation algorithm off-line, on 

a set of experimental data obtained from a rear-wheel-drive Jaguar S-type test vehicle 

equipped with the Oxford Technical Solutions RT3003 measurement unit (the specifications 

are given in the Appendix B). The estimator performance has been tested for various driving 

maneuvers (e.g. double lane change, slalom, J-turn, steady cornering) carried out during the 

winter tests on low-µ surfaces (mostly concrete flat road covered with packed snow) and 

relevant maneuvers on dry asphalt. The sample time of the experimental data was 50ms or 

10ms depending on the driving maneuvers. 

The results analyzed herein and shown in Figs. 6.4 to 6.7, are obtained by using high accuracy 

vehicle dynamics measurements obtained from the RT3003 unit instead of using the 

equivalent signals from standard vehicle dynamics sensors. More specifically, the signals 

used for testing the proposed estimator include: the lateral and longitudinal acceleration, 



                                  Sideslip estimator based on nonlinear vehicle dynamics and stochastic tire models 

 
 

119

lateral and longitudinal velocity, yaw rate, and sideslip angle measurements obtained from the 

RT3003 unit, and data acquired directly from the vehicle CAN bus system such as front wheel 

steering angle δ, front and rear wheel speeds, front and rear braking torques (τbf and τbr , 

calculated based on the brake caliper pressure measurements). The simulation results have 

been obtained for fixed settings of the state and measurement covariance matrices, Q and R, 

respectively. 

Since the tire forces are not measured on the test vehicle, and in order to analyze the accuracy 

of the simultaneous lateral tire force estimation, which is vital for the later cornering stiffness 

estimation (addressed in more detail in Chapter 7), the reference values of the front and rear 

tire lateral forces Fyf and Fyr have been reconstructed from the available measurements, 

according to the following expressions [61]: 

δ
ω

cos)( cb
Icma

F zzy
yf +

+
=

&
 (6-16a) 

cb
Ibma

F zzy
yr +

−
=

ω&
 (6-16b) 

where the above expression for Fyr is obtained by combining Eqs. (6-2) and (6-3), while the 

expression for Fyf is obtained by inserting thus derived rear lateral force Fyr back into Eq. (6-

2) and neglecting the longitudinal tire force component Fxfsinδ. Note that the tire force 

reconstruction approach by using (6-16) requires the yaw rate derivative signal, which would 

make it ineffective in on-line applications due to the noise sensitivity. Also, in the presence of 

significant braking or accelerating actions in curves, the assumption of small Fxfsinδ 

component would not hold and therefore Eq. (6-16a) would no longer be valid (i.e. potentially 

large errors cannot be neglected). 

Moreover, an algebraic analysis of the accuracy of sideslip angle calculation according to Eq. 

(6-15) related to the accuracy of the longitudinal and lateral vehicle velocities (i.e. the two 

essential state variables of the underlying vehicle dynamics model) measurements or 

estimates has been carried out by considering the following sideslip error models:  

ββ −
+

=
uu

v
u ~atan~  (6-17a) 

ββ −
+

=
u

vv
v

~
atan~ . (6-17b) 

For the case of constant longitudinal velocity error const.=u~  For this analysis let the 

m/s70.~ =u (or 2.5 kph), then according to Eq. (6-17) the theoretical sideslip angle calculation 
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relative and absolute error margin ( )ii uvf ,~ =β  can be determined for different operating 

points ( [ ]3451015=iu  m/s) as illustrated in Fig. 6.4. 
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Fig. 6.4 The absolute (a) and relative (b) sideslip angle errors due to the constant error of the 
vehicle longitudinal velocity vs. lateral velocity (sideslip angle) magnitude. 

 

In general, the absolute and relative errors in sideslip angle reconstruction, related to the 

constant error of vehicle longitudinal velocity signal, increase as the vehicle speed decreases. 

The relative error increase is more emphasized if the sideslip angles are small. Consequently, 

the calculation of the sideslip angle by using the Eq. (6-15) becomes rather sensitive to a 

vehicle velocity measurement or estimation errors when the vehicle velocity is small (the 

impact of the vehicle longitudinal velocity measurement resolution becomes significant). In 

such case the performance of the estimator is limited by numerical constraints and cannot be 

improved by the estimator tuning and therefore the estimation should be discarded as 

unreliable. However, since the sideslip angle remains small (near zero) in such conditions, 

and the vehicle handling stability is not likely to be compromised at such small velocities, the 

sideslip angle estimation is not relevant (the ESP is held inactive). 

Initial analysis of the estimator performance (i.e. proof of concept determination) has been 

carried out by running the estimator offline on a set of prerecorded experimental data from an 

instrumented test vehicle utilizing the high precision inertial unit measurements for 

characteristic driving maneuvers on a low-mu road. For the double lane change maneuver in 

Fig. 6.5 the peak sideslip angle estimation error is approximately 0.5 deg (i.e. 5-10% of the 

instantaneous sideslip angle values). Apart from the sideslip angle estimation, this estimator 

also provides the tire forces estimates (i.e. lateral and longitudinal tire forces of the single 
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track model). The estimates of the front and rear lateral tire forces (Fyf and Fyr) concur well 

with the reference values, calculated from the available measurements according to Eq. (6-

16). At the same time, these estimates are characterized by much lower noise content (i.e. the 

estimator effectively filters the measurement noise inherent to force reconstruction approach). 

Fig. 6.6 illustrates the estimator performance for driving on a circular track at the velocity of 

65kph. This maneuver is characterized with roughly constant lateral acceleration and yaw rate 

( ya  ≈ 3.5 m/s2 and r ≈ 10 °/s) and the peak sideslip angle in the range from 4 to 6 deg. The 

overall estimation errors are small, except at the beginning and end of the experiment when 

they increase. Namely, at the start of the maneuver the estimation error of approximately 1 

deg (Fig. 6.6) is caused by inaccurate initial conditions of the state vector estimate (cf. Fig 

6.3), and this initial error has been eliminated after few seconds in accordance to the EKF 

convergence dynamics. On the other hand, the increased estimation errors at the end of the 

maneuver (100-110s interval in Fig. 6.6) are related to the very small vehicle speed and near 

zero lateral velocity at which the vehicle dynamics model becomes unobservable and β-

estimation ineffective. Under these conditions (i.e. vehicle speed under 5 m/s and near zero 

yaw rate and lateral acceleration), the estimator should be switched off in order to prevent the 

estimation error build-up (see the above discussion related to numerical constraints of Eq. 6-

15 and results given in Fig. 6.4). 

Further analysis of the estimator performance has been carried out for slalom (Fig. 6.7) and J-

turn maneuvers (Fig. 6.8). These results confirm a generally high accuracy of sideslip angle 

estimation (the errors are typically less than 0.5°) for a wide range of driving conditions and 

different types of driving maneuvers. Also, a favorable accuracy of the front and rear lateral 

tire forces has been achieved, which justifies the assumption that this type of estimator may 

be used for on-line estimation of cornering stiffness (see Chapter 7). 
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Fig. 6.5 Measurements of the vehicle dynamics variables (a), sideslip angle estimate and 

estimation error (b), and calculated and estimated lateral forces (c) for double lane change 
maneuver carried out on flat road covered with packed snow. 
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Fig. 6.6 Measurements of the vehicle dynamics variables (a), sideslip angle estimate and 

estimation error (b), and calculated and estimated lateral forces (c) for driving on a 100m 
radius circular track at velocities of 65kph. 
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Fig. 6.7 Measurements of the vehicle dynamics variables (a), sideslip angle estimate and 
estimation error (b), and calculated and estimated lateral forces (c) for slalom maneuver 

carried out on flat road covered with packed snow. 
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Fig. 6.8 Measurements of the vehicle dynamics variables (a), sideslip angle estimate and 
estimation error (b), and calculated and estimated lateral forces (c) for J-turn maneuver 

carried out on flat road covered with packed snow. 
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6.5 Experimental results for standard set of VSD sensors 
 
In order to gain the insight into limitations related to applying the above estimator in the mass 

production vehicles, the estimator performance degradation has been analyzed for the case of 

utilizing standard set of the vehicle dynamics sensors (i.e. vehicle on-board sensors utilized by 

an ESP system) instead of the high precision inertial measurement unit equipped with the 

GPS receiver. Commonly used vehicle dynamics sensors within the production vehicles 

include the lateral accelerometer, yaw rate gyro, steering wheel angle, and wheel speed 

sensors; and nowadays often the longitudinal accelerometer, as well. 

The measurement of the vehicle longitudinal velocity enables tighter margins of the sideslip 

angle estimation errors in comparison to the estimator utilizing the measurement model from 

[18]. This additional measurement was readily available from the inertial measurement unit 

utilized for the experimental validation in the previous Subsection. However, in case of using 

standard VSD sensors the vehicle longitudinal velocity is derived from the nondriven front 

wheels rotational speed measurements characterized with high noise content. Nevertheless, 

this additional information remains beneficial, but the reliability of such measurement is 

decreased during the braking or accelerating actions. More precisely, its accuracy is decreased 

in case of braking due to the large longitudinal slips (the rear wheel drive vehicle has been 

considered so the impact of the acceleration action to measurement accuracy should be much 

less emphasized). In order to mitigate the braking related decrease in the estimator 

performance the related element of the measurement covariance matrix ru should be increased 

(less confidence to the particular measurement). Consequently, the related Kalman gains 

calculated from the Ricatti equation (6-12) would decrease and the a-posteriori estimates of 

the state variables would be less affected by the unreliable longitudinal velocity measurement, 

while the effect of the other measurements on the correction phase would not be influenced. 

6.5.1 VSD sensors measurement errors analysis 
Commonly used vehicle dynamics sensors have generally significantly larger measurement 

errors then the aforementioned IMU. The increased level of the measurement errors (such as 

offset, sensitivity errors, nonlinearity, noise etc.) affects the accuracy of the proposed 

estimator. In order to gain the insight into the limits imposed by the usage of standard set of 

sensors, the measurement errors and related sideslip angle estimation errors have been 

analyzed for different driving maneuvers and environmental conditions. Moreover, dominant 

sources of estimation errors for different driving maneuvers have been determined and 
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appropriate compensation procedures have been considered in order to minimize the impact 

of these measurement errors to the overall estimator performance. 

The experimental vehicle's Electronic Stability Program (ESP) system was not equipped with 

the longitudinal accelerometer, so the required signal is calculated within the ESP algorithm 

(by calculating the first derivative of the vehicle reference velocity signal available on the 

vehicle’s CAN bus). Consequently, the characterization of the longitudinal accelerometer 

errors upon the estimator performance was not possible. Nevertheless, the errors of thus 

reconstructed longitudinal acceleration signal has been analyzed and compared to more 

realistic longitudinal acceleration measurement model obtained by adding the gravity 

acceleration component induced by a pitch motion of the vehicle chassis to the reference 

vehicle longitudinal acceleration measurement obtained from the IMU. This “simplified” 

measurement model has been applied hereafter for reconstruction of the realistic ESP 

longitudinal acceleration measurement signal used for the analysis of the accuracy of the 

proposed estimator in the presence of measurement errors. 

Measurement errors of the ESP inertial sensors have been obtained from filtered sensor 

signals in order to suppress the impact of the measurement noise which is anyway filtered 

within the KF. For that purpose the 2nd order Butterworth low pass filter with the pass-band 

frequency of ωp = 0.1ωn has been utilized, where ωn is a half of the sampling frequency (e.g. 

fs = 20Hz, Ts = 0.05s). 

Fig. 6.9 illustrates the reference state variables (measured by IMU) and vehicle dynamics 

sensors measurement errors for double lane change maneuver carried out on a flat road 

covered with packed snow. Fig. 6.10 shows the associated sideslip angle estimation errors 

induced by individual vehicle dynamics sensors errors and overall aggregate estimation error 

for the considered driving maneuver. 



                                  Sideslip estimator based on nonlinear vehicle dynamics and stochastic tire models 

 
 

126

0 10 20 30
10

12

14

16

u 
[m

/s
]

0 10 20 30
-5

0

5

v 
[m

/s
]

0 10 20 30
-50

0

50

t [s]

0 10 20 30
-20

0

20
δ 

[°
]

0 10 20 30
-5

0

5

a y
 [m

/s
2
]

0 10 20 30
-4

-2

0

2

a x
 [m

/s
2 ]

t [s]

0 5 10 15 20 25
-0.5

0
0.5

1
1.5

2

-1

-0.5

0

0.5

1

u ε 
[m

/s
]

t [s]
0 5 10 15 20 25

ω
zε

 [°
/s

]

Calc. f(ωfl, ωfr, δ )ESP int. ref.

-2

-1

0

1

2

-1

-0.5

0

0.5

0 5 10 15 20 25

t [s]
0 5 10 15 20 25

a x
ε
 [m

/s
2 ]

a y
ε 

[m
/s

2
]

a

b c

ω
zε

 [°
/s

]

t [s]

 
Fig. 6.9 Measurement errors of the standard VSD sensors for the double lane change 

maneuver: vehicle dynamics state variables reference signals measured by IMU (a), wheel 
seed sensors based vehicle velocity and yaw rate gyro measurement errors (b), and lateral 

and longitudinal acceleration measurement errors (c). 
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Fig. 6.10 Sideslip angle estimation errors induced by the measurement errors of the standard 

VSD sensors for double lane change maneuver at velocities of 50kph. 
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The results shown in Fig.6.10 indicate that the largest impact to the estimation error has the 

yaw rate gyro offset error, which in the initial interval of the experiment (during the straight 

driving) results in a large drift-like estimation error. Evidently, the offset is present in the yaw 

rate gyro measurement (see Fig. 6.9b). However, this kind of error can be effectively 

suppressed by a simple offset compensation action during the straight driving conditions. 

Moreover, if the estimator measurement update (i.e. correction phase) is disabled during the 

initial interval of straight driving, the measurement offset related estimation error buildup will 

be prevented, and the overall estimation errors significantly reduces (see the results presented 

in Fig. 6.11). Note that all measurement errors in VSD sensor signal are present in those 

verification tests (i.e. none of the error has been compensated). 

More precisely, by switching off the EKF measurement update and related correction of the a-

priori state estimates according to Eq. (6-14), during the intervals of the straight driving when 

the underlying vehicle dynamics model becomes unobservable, helps in reduction of the 

measurement offsets-related drift-like estimation errors. For this purpose the control variable 

Coff  has been defined as (see Fig. 6.11c):  

( )
( ) ( )

⎪⎩

⎪
⎨
⎧ <∨<∧<

=
else

ukuakak
kC

ththyythzz

off
1

)(0 ,,ωω
 (6-18) 

that is utilized for activating and deactivating the KF measurement update phase, and where 

ay,th, ωz,th, and uth are the preset thresholds representing a tuning parameters. In order to reduce 

the chattering effects in calculation of the Coff (i.e. the measurement noise-related frequent and 

multiple setting and resetting) the filtered measurement signals have been used. The lateral 

acceleration and yaw rate measurements are used in Eq. (6-18) for monitoring the vehicle 

lateral dynamics excitation levels and detecting the conditions of decreased observability of 

the estimator underlying vehicle dynamics model. Moreover, due to the increased sensitivities 

of sideslip angle estimation to the longitudinal velocity estimation residuals at low vehicle 

speeds (see Fig. 6.4) the measurement update and sideslip angle estimation should be held 

inactive (typically for u < 5 m/s). This restriction, however, does not have effect on the 

overall performance because in such conditions the sideslip angle is typically very small and 

vehicle is operating well within the stable region. The results illustrated in Fig. 6.11 have been 

obtained for the activation thresholds (ay,th = 0.25 m/s2, ωz,th = 0.0087 rad/s, and uth = 5 m/s). 
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Fig. 6.11 Sideslip angle estimation errors induced by the measurement errors of the standard 
VSD sensors for double lane change maneuver at velocities of 50kph in case of activated 

switching off of the KF a-priori estimation correction during the straight driving: estimates 
(a), estimation errors (b), and update deactivation signal (c). 

 

Although, the KF measurement update switching ON/OFF action enables significant 

reduction in the drift-like estimation error during straight driving conditions, in order to 

further decrease the estimation errors the sensors offset compensation is required. 

Another relevant source of the estimation errors, related to the lateral accelerometer 

measurement bias, is a result of the gravity acceleration component (i.e. gsinφcosθ ≈ gsinφ) 

see Eq. (5-7). In order to be able to compensate for such errors, the information regarding the 

vehicle roll is required. On the other hand, the estimation errors induced by the wheel speed 

and longitudinal acceleration measurement errors are not likely to be resolved by the 

compensation (i.e. the compensation would require additional sensors and would be highly 

sensitive to road disturbances, braking, accelerating actions etc.). These errors could be, on 

the other hand, reduced by performing adequate measuremement preprocesing and/or by 

tuning of the KF state and measurement covariances. 

 



                                  Sideslip estimator based on nonlinear vehicle dynamics and stochastic tire models 

 
 

129

6.5.2 Roll angle estimation for lateral accelerometer bias compensation 
The roll gyro is not the standard vehicle dynamics sensor and therefore the roll angle, aimed 

for the compensation of the gravity acceleration component in the lateral accelerometer 

measurement, needs to be estimated somehow. For this purpose, a simple second order model 

of the vehicle roll dynamics, defined by Eqs. (6-19)-(6-22) has been utilized [49] (see 

Appendix C for meaning and values of roll model parameters): 

01 =−+ hamtFI yrzrc δφ&&  (6-19) 

The moment of inertia for the instantaneous roll axis and change in the tire normal loads can 

be defined as: 
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By inserting the Eqs. (6-20) and (6-21) into Eq. (6-19) the following roll model is obtained: 
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Based on the above equations the transfer function model of the vehicle roll dynamics can be 

defined as: 
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where the coefficient in the denominator of transfer function are defined by the following 

expressions: 

rc

r

rc

r

I
tkk

I
tbb

2
,

2

2

1

2

1 ==  (6-24) 

The state space representation of the above roll dynamics model can be formulated as: 
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where [ ]Tφφ &=x  and ya=u . 
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The dynamic vehicle roll model defined by Eq. (6-22) can be applied in a case of driving on a 

flat road without skidding, and it presumes the linear damper characteristics. Consequently, it 

looses its accuracy on a banked road and in the case of understeering or oversteering 

conditions. 

On the other hand, the kinematic roll model based on Eq. (6-26) [67] can be used for rough 

roll angle estimation in the case of driving on the banked road. The below equations can be 

derived from the accelerometer measurement model (see Chapter 5 and [30]) from Eqs. (5-7) 

and (5-8) by neglecting the measurement bias and noise terms: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −−
=

g
vau zx ωθ

&
arcsin ,  ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −−
=

θ
ω

φ
cos

arcsin
g

vua zy &
 (6-26) 

However, the lateral velocity and its derivative are typically not available, and therefore the 

approximations of the above expressions are used in [67] for estimation of the pitch and roll 

angles: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

g
au x&

arcsinθ̂ ,  ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
=

θ

ω
φ ˆcos

arcsinˆ
g

ua zy  (6-27) 

Note that these rough estimates will be valid in the maneuvers in which the lateral velocity 

and its derivation are small or moderate. These conditions can be monitored by checking the 

steering angle derivative and lateral acceleration signals. The benefit of the approach given by 

Eq. (6-27) when compared to the 2nd order roll dynamics model (6-25) is that it can provide 

reasonably accurate roll estimates on the banked road. Therefore, the large discrepancies 

between these two models can be used as an indicator of the bank (under presumption that the 

severe lateral dynamics excitation conditions characterized with large v and v&  can be 

detected). 

Another issue related to reconstruction and measurement of the roll angle is related to the 

effect of the so-colled kinematic bias. Namely, a kinematic bias is an additive component in 

the roll rate gyro signal, which is induced by the combined cornering and pitch motion of the 

vehicle [67], and it can be derived from the following basic kinematic equations: 

θφωθφωωφ tancostansin zyx ++=&  (6-28a) 

θωωφ tanzx +≈&  (6-28b) 

Namely the kinematic bias in the roll rate gyro measurement is induced by the second right-

hand side term in Eq. (6-28b), which can result in potentially large roll angle error. 
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Apparently this kinematic bias, illustrated in Fig. 6.12b for the driving on a circular track 

maneuver, has not been compensated for within the IMU. Therefore, it should be considered 

when dealing with the reference roll angle measurement signal that is used for validation of 

the roll angle estimate obtained from the simple second order roll dynamic model and used for 

the later compensation of the lateral accelerometer bias in sideslip angle estimator. 

 
Fig. 6.12 Evaluation of roll angle estimate for the driving on a circular track with variable 

road superelevation (pitch angle). 
 

Kinematic bias present in the reference roll rate sensor measurement (see Fig. 6.12b), induced 

by a non-negligible zθω  term in the roll kinematic model (6-28b), directly results with the roll 

angle reconstruction error represented in this case as a saw tooth signal superimposed upon 

the true roll angle [67]. Note that the estimated roll angle, based on the second order roll 

dynamics model (6-23), is not influenced by this kinematic bias since it does not use the roll 

rate sensor measurement. The results shown in Fig. 6.12a indicate that if the kinematic bias is 

compensated the estimated and measured roll angle signals are characterized with rather small 

discrepancies. 

Fig. 6.13 illustrates the relevant vehicle dynamics measurement errors, the effectiveness of the 

compensation of the yaw rate gyro offset and lateral accelerometer gravity-related offset term 

related errors, and respective improvements in the sideslip angle estimation accuracy for a 

double lane change maneuver. 



                                  Sideslip estimator based on nonlinear vehicle dynamics and stochastic tire models 

 
 

132

-10
-5
0
5

10
15

-8
-6
-4
-2
0
2
4

0 5 10 15 20 25

t [s]
0 5 10 15 20 25

-2

-1

0

1

2

-1

-0.5

0

0.5

t [s]
0 5 10 15 20 25

0 5 10 15 20 25
ESP int. signal
Simplified measurement model

Raw
w/ offset correction

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t [s]
0 5 10 15 20 25

Raw
 gsin    comp. (EST)

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

t [s]
0 5 10 15 20 25

Measured
Est.(2nd ord. model)

a b

c d

Reference
Estimate w/ compensation
Estimate w/o compensation

 
Fig. 6.13 Estimation errors in case of sensor measurement errors compensation w/o ay 

filtering: yaw rate gyro and longitudinal accelerometer errors (a), sideslip angle estimate and 
estimation error (b), roll angle estimate (c), and lateral accelerometer errors (d). 

 
The presented results (samling rate Ts = 10ms) have been obtained for the following settings 

of the state covariance matrix Q =diag([1.6, 0.1, 0.02, 0.2, 0.2, 20, 20, 20, 20]⋅107) and 

measurement covariance R = diag([0.01, 0.1, 0.1, 0.1, 0.1, 1]).  

According to the results illustrated in Fig. 6.13 there is an offset in the reference roll angle 

signal obtained from the RT3003 measurement unit (φoff = -1deg). Besides this offset in the 

reference signal, the roll angle estimate, obtained by using the roll dynamics model, is quite 

accurate. Consequently, the lateral accelerometer gravity component (rather small in this 

maneuver) can be effectively compensated for (Fig. 6.13d), and related estimation error 

reduced (Fig. 6.13b). 

The lateral accelerometer signal is characterized by relatively large noise that results in the 

increased sideslip estimation errors, especially under conditions of small lateral dynamics 

excitation (indicated by small lateral acceleration and yaw rate that result in small lateral 

velocity and sideslip angle as well). However, these errors can be effectively reduced by 
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utilizing a low-pass filter and filtering the lateral accelerometer measurement before it is 

forwarded to the Kalman filter. The efficiency of such pre-filtering is illustrated in Fig. 6.14 

for a double lane change maneuver. The 2nd order Butterworth low-pass filter with fg = 5Hz 

has been utilized. Moreover, the linear acceleration signals are usually also filtered within the 

inertial measurement unit in order to generate the reference signals. In this case, in order to 

compensate for the effect of time delay in accelerometer signal the reference sideslip angle is 

also filtered and the results of this intervention on the estimation are illustrated in Fig. 6.14. 

(all other parameters remained the same). According to the results presented in Fig. 6.14b it is 

evident that the transient estimation errors can be effectively reduced by removing the 

abovemantioned time delay between the inertial sensors measurements and sideslip angle 

reference. 
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Fig. 6.14 Sideslip angle estimation error after compensating for the time delay in lateral 
accelerometer signal: lateral accelerometer measurement error (a) and sideslip angle 

estimation error (b). 
 
The effect of the state covariance tuning of the longitudinal velocity state variable upon the 

accuracy of sideslip angle estimation is illustrated in Fig. 6.15. Namely, by setting the higher 

value of the longitudinal velocity state variable covariance qu results in lower sideslip angle 

peak estimation errors during transients. The simultaneous change of the covariance, of both 

the longitudinal and the lateral velocities (qu and qv), however does not have any affect upon 

the estimation error (i.e. it is predominantly determined by their ratio). 
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Fig. 6.15 Sideslip angle estimation error vs. longitudinal velocity state covariance qu for 

double lane change maneuver and compensated dominant sensor errors. 
 

A similar analysis has been carried out for the slalom maneuver on a flat low-µ surface. The 

vehicle dynamics state variables and sensor measurement errors are shown in Fig. 6.16.  
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Fig. 6.16 Measurement errors of the standard VSD sensors for the slalom maneuver: vehicle 
dynamics state variables reference signals measured by IMU (a), wheel seed sensors based 

vehicle velocity and yaw rate gyro measurement errors (b), and lateral and longitudinal 
acceleration measurement errors (c). 
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The related sideslip angle estimation results shown in Fig. 6.17, obtained for the case of 

compensated yaw rate bias and lateral accelerometer gravity component error, indicate that 

the dominant sources of the remaining estimation errors are uncompensated lateral 

acceleration measurement error (e.g. in this maneuver the total acceleration measurement 

error amounts approximately 10% of the peak acceleration value, see Fig. 6.16c) and 

longitudinal velocity errors. The remaining yaw rate errors (after bias compensation) and 

longitudinal acceleration-related errors are present, but they are relatively small (less then 

±0.3 deg). 
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Fig. 6.17 Sideslip angle estimation errors induced by the measurement errors of the standard 
VSD sensors for slalom maneuver at velocities of 60kph: estimates (a), estimation errors (b), 

and update deactivation signal (c). 
 

Note that the overall estimation errors induced by the standard vehicle dynamics sensors 

measurement inaccuracies after the compensation are relatively small for the considered 

slalom maneuver (see Fig. 6.17b, deg1~
<β ). Moreover, the estimator switching-off action, 

controlled by Coff signal (shown in Fig. 6.16c) mitigates the generation of the larger drift-like 

estimation errors. The effectiveness of the error compensation is highlighted in Fig 6.18b 
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where the sideslip angle estimates without sensor error compensation is compared to the one 

obtained after compensation already shown in Fig 6.17b (see light blue colored trace). 
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Fig. 6.18 Estimation errors in case of sensor measurement errors compensation: yaw rate 

gyro and longitudinal accelerometer errors (a), sideslip angle estimate and estimation error 
(b), roll angle estimate (c), and lateral accelerometer errors (d). 

 

The accuracy of the roll angle estimation based on the simple 2nd order dynamic model and 

related lateral acceleration error compensation are illustrated in Fig. 6.18c and Fig. 6.18d, 

respectively. The roll angle estimation errors at a peak roll angle values can be related to the 

presence of the road disturbances, nonlinear damper characteristics etc. Nevertheless, the 

sideslip estimation error in case of the compensated sensor measurement errors is reduced 

well within the one degree span (Fig. 6.18b and Fig. 6.17b). 

Fig. 6.19 illustrates the estimation results for the steady cornering maneuver on the circular 

track at low-µ surface, which is characterized with relatively poor excitation of the vehicle 

lateral dynamics (i.e. small lateral velocities) and consequently represents the challenging 

maneuver for accurate estimation of the sideslip angle. In Fig. 6.20 the respective sensor 

measurement errors and roll angle estimate have been presented. 
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Fig. 6.19 Sideslip angle estimation errors induced by the measurement errors of the standard 

VSD sensors for cornering maneuver: estimates (a), estimation errors (b), 
and update deactivation signal (c). 
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Fig. 6.20 Estimation errors in case of sensor measurement errors compensation for cornering 
maneuver: yaw rate gyro and longitudinal accelerometer errors (a), sideslip angle estimate 

and estimation error (b), roll angle estimate (c), and lateral accelerometer errors (d). 
 

Evidently in this maneuver the relation between lateral acceleration and roll angle is 

unreliable while the large component in the measured roll angle signal is caused by the road 

surface (packed snow) unevenness disturbances and some road bank. In such conditions the 

lateral accelerometer gravity bias compensation based on the rough roll angle estimate 

obtained from the simple second order dynamic roll model is ineffective. Moreover if the state 

covariance matrix is increased (more precisely if the qu component is increased) the 

estimation errors becomes much larger and still the compensation remains ineffective. Since 

this maneuver is characterized by the steady cornering conditions without excessive lateral 

velocity and its derivative the kinematic roll model defined by Eq. (6-27) can be applied for 

roll angle estimation. Difference between the two of the roll angle estimates, illustrated in Fig. 

6.21, clearly indicates the presence of the road bank or some kind of road unevenness 

disturbance. 
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Fig. 6.21 Comparison of the roll angle estimates (a) and the effectiveness of the lateral 

acceleration gravity bias compensation and related decrease of the sideslip angle estimation 
error (b), based on the reference kinematic model and 2nd order dynamic model. 

 

The results of the roll angle estimate presented in Fig. 6.21a indicate a favorable accuracy of 

the reference (kinematic) roll model, when compared to the second order dynamic model-

based estimate, for the constant cornering maneuver characterized with low excitation level of 

the vehicle lateral dynamics. Nevertheless, the better estimate of the roll angle and improved 

compensation of the gravity-related accelerometer bias the sideslip estimation accuracy has 

not been improved much, as a result of the combined effects of other, uncompensated sources 

of errors (e.g. longitudinal velocity and acceleration measurement errors), low excitation of 

the lateral dynamics and related small magnitudes of the sideslip angle (i.e. numerical 

sensitivity constraints, cf. Fig. 6.4). 

In Fig. 6.22 and 6.23 the vehicle dynamics sensor measurement errors and related sideslip 

angle estimation errors have been analyzed for the J-turn maneuver carried out on a low-µ 

surface (i.e. packed snow). The KF longitudinal velocity threshold parameter has been 

decreased (uth=0.25m/s) in order to ensure the valid estimate for the most part of the interval 

with emphasized sliding of the vehicle (i.e. time interval from 12 to 15th second that is 

characterized with longitudinal velocity less then 5m/s). 
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Fig. 6.22 Measurement errors of the standard VSD sensors for J-turn maneuver: vehicle 
dynamics state variables reference signals measured by IMU (a), wheel seed sensors based 

vehicle velocity and yaw rate gyro measurement errors (b), and lateral and longitudinal 
acceleration measurement errors (c). 

 

Based on the results given in Fig. 6.22, dominant measurement erros are observed in the 

longitudinal velocity and longitudinal acceleration measurement signals. Consequently, the 

sideslip angle estimation error is predominantly determined by the vehicle velocity error as 

illustrated in Fig. 6.23 (compare the green and cyan trace on time interval 8-16th second). 
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Fig. 6.23 Sideslip angle estimation errors induced by the measurement errors of the standard 

VSD sensors for J-turn maneuver: estimates (a), estimation errors (b), 
and update deactivation signal (c). 

 

The above results have been obtained for the case of compensated lateral acceleration and 

yaw rate measurement biases. Problem of large sideslip angle estimation errors at the end of 

the maneuver characterized with relatively high sideslip values is related to (i) small vehicle 

longitudinal velocity and related numerical errors in calculating sideslip angle, and (ii) 

significant longitudinal velocity measurements errors induced by large longitudinal slips due 

to braking action. Fig. 6.24b illustrates that the β-estimation is effective regardless of the 

presence of large longitudinal velocity errors observed in Fig. 6.22b. In this case the 

difference between the proposed approach of calculating the vehicle velocity solely from the 

front non-driven wheel and the internal reference velocity signal derived directly from 

vehicle’s ESP system is emphasized, and the proposed approach has proved to be much more 

accurate, because it does not relay on the rear tire speed signals characterized with large 

longitudinal slips due to severe braking action undertaken at the end of this maneuver. 

Although the absolute values of the sideslip angle estimation errors are rather high the relative 

errors are reasonable for this kind of driving maneuver and when considering the accuracy 

limitations of the standard vehicle dynamics sensors. 
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Fig. 6.24 Estimation errors in case of sensor measurement errors compensation for J-turn 
maneuver: yaw rate gyro and longitudinal accelerometer errors (a), sideslip angle estimate 

and estimation error (b), roll angle estimate (c), and lateral accelerometer errors (d). 
 

In Fig. 6.25 the measurement errors of the standard set of vehicle dynamics sensors are 

illustrated for the case of gentle slalom maneuver on circular banked high-µ track. This 

maneuver is exceptionally challenging since the vehicle is driven on a banked road and the 

lateral dynamics is poorly excited (i.e. the lateral velocity and sideslip angle are small). Also, 

the measurement errors in lateral acceleration signal are significant (external disturbance) and 

the roll estimation based on the second order dynamic model becomes highly inaccurate and 

consequently the error compensation ineffective (see Fig. 6.26). However, in such conditions 

the kinematic roll model can provide favorably accurate roll angle estimate the can be used 

for effective lateral acceleration measurement error compensation and significant 

improvement of the sideslip angle estimation accuracy (see bright gray trace in Fig. 6.26b). It 

should be noted that this error is consistent with the results obtained for other maneuvers 

where the error margin of the estimator, when using a standard set of vehicle dynamics 
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sensors instead of precision IMU and GPS, typically doubles (the error margin for this 

maneuver in the nominal case amounts approximately 1°). 
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Fig. 6.25 Measurement errors of the standard VSD sensors for the steady cornering 
maneuver on banked circular track: vehicle dynamics state variables reference signals (a), 
wheel speed sensors based vehicle velocity and yaw rate gyro measurement errors (b), and 

lateral and longitudinal acceleration measurement errors (c). 
 

0 5 10 15 20 25 30 35 40 45-20
-15
-10
-5
0
5

0 5 10 15 20 25 30 35 40 45-20
-15
-10
-5
0
5

t [s]
0 5 10 15 20 25 30 35 40 45-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

t [s]

 [d
eg

]
 [d

eg
]

a y
 [m

/s
2 ]

Raw
gsin  comp. (kin. mod.)

 comp. (2nd ord. mod.)gsin

Reference
Estimate w/o comp.

Estimate w/ comp.,
Estimate w/ comp.,

gsin (kin. mod.)
 (2nd ord. mod.)gsin

a b
 

Fig. 6.26 Lateral acceleration measurement errors compensations based on the roll angle 
estimation (a) and related sideslip angle estimation errors (b). 



                                  Sideslip estimator based on nonlinear vehicle dynamics and stochastic tire models 

 
 

144

6.6 Adaptive fading EKF - based estimator 
In order to improve the overall estimation accuracy of the basic, non-adaptive estimator for a 

wide range of operating conditions and driving maneuvers the adaptive fading algorithm has 

been utilized which changes the Kalman filter state and measurement covariance matrices by 

multiplying them with a certain time-variant scaling factors. More precisely, the single fading 

and multiple fading factors have been considered for formulation of the adaptive Kalman 

filter (i.e. SFF or MFF Adaptive Fading Kalman filter respectively, see Chapter 3) aimed for 

estimator design. Scaling factors are determined based on the difference between the 

anticipated theoretical measurement residuals or innovation (defined by Eq. (3-29)) and the 

true residuals obtained from Eq. (3-30). These adaptation algorithms change the state and 

measurement covariance matrices (and consequently the Kalman gain and a-priori state 

estimation error covariance matrices) in the presence of the increase of the measurement 

residuals indicating the decrease in the reliability levels of the process model (i.e. unmodeled 

disturbance, change in the model) or increased errors in the measurement model (i.e. 

increased sensor errors). Note that the model observability issues and related estimation errors 

cannot be avoided by adaptation but only by switching of the estimator (as illustrated in Fig. 

6.10). 

In Fig. 6.27 the performance of the single scaling factor adaptive fading-based estimator has 

been compared to the nominal non-adaptive filter for the constant steering driving maneuver 

on the sloped circular asphalt track (high-µ) and utilization of the high precision sensors 

measurements. Road bank angle constitute the unmodeled disturbance that affects the 

reliability of vehicle dynamics and measurement models, and consequently decreases the 

estimation accuracy. Primary application of such adaptation methods are thus related to 

dealing with changes in the reliability of the model itself due to the presence of the 

unmodeled dynamics or external disturbances that induce discrepancies between the predicted 

and measured residuals. 
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Fig. 6.27 Single fading factor AFEKF performance for driving on the banked oval concrete 
track: sidesip angle estimate and estimation error (a), state covariance and measurement 

covariance fading factor (b), and dynamics model reliability signal (c). 
 

The initial sideslip angle estimation error of approximately 0.35deg (see Fig. 6.23a) remains 

constant during the time interval from 0 to12 seconds due to the low excitation of the lateral 

dynamics and related reduced observability of the dynamics model. These results have been 

obtained for the case of utilizing the quality IMU and GPS sensors measurements, where the 

inertial measurements are characterized with compensated gravity acceleration components. 

The dynamic model reliability is analyzed by utilizing the expression: 

)1|(~))()1|()()(1|(~)( 1 −−−= − kkkkkkkkk TT yHPHyγ  (6-29) 

In general the increase of γ indicates the decrease of the model reliability, predominantly due 

to the emphasized effects of the unmodeled dynamics or external disturbances (e.g. road bank, 

road grade etc.) 
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Fig. 6.28 illustrates the effect of the application of memory fading adaptation algorithms upon 

the sideslip angle estimation accuracy for J-turn maneuver carried out on a low-µ surface. 
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Fig. 6.28 Comparison of the accuracy of the non-adaptive and adaptive estimators in case of 

using precission IMU sensors measurements for J-turn maneuver on low-mu surface. 
 

Based on the results given in Fig. 6.28 it can be concluded that the adaptive estimator surpass 

the non-adaptive estimator in their performances, where the multiple scaling factor AEKF 

provides somewhat better estimate than the single scaling factor-based estimator. 

It should be noted, that in the double lane change or slalom maneuvers (cf. Figs. 6.9 and 6.15) 

carried out on the flat road and characterized by the small impact of the unmodeled 

disturbances (i.e. roll and pitch dynamics) and consequently the small measurement residuals 

the adaptive estimator becomes less efficient. Namely, having in mind the fact that the 

measurement model is given much more weight than the state model in tuning of the KF 

(because the state model comprises the first order random walk type stochastic models of tire 

forces) the adaptive estimators, in such conditions, provide similar estimates as the basic non-

adaptive one. 

 

6.7 Summary 
The EKF-based sideslip angle estimator has been proposed, which is based on the 5DoF 

single-track vehicle dynamics model with a stochastic tire force submodel. The conducted 
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simulation analysis and experimental verification have shown a favorable accuracy of the 

proposed sideslip angle estimator for the nominal case of utilizing the high precision 

INS/GPS measurement unit signals (i.e. estimation errors typically less then 0.5deg) in 

different driving maneuvers (e.g. double lane change, slalom, steady cornering etc.) thus 

indicating a good application potential of the proposed approach based on the reduced-order 

vehicle dynamics model. In addition to the sideslip angle estimate, the estimator also provides 

accurate estimates of tire forces, thus providing a good foundation for lateral tire curve 

stiffness and tire-road coefficient of friction estimation (see Chapter 7 for details). 

Moreover, in the case of utilizing the standard set of vehicle dynamics sensors, the initially 

poor estimation accuracy of the proposed sideslip angle estimator can be significantly 

improved by conducting relatively simple error compensations on yaw rate gyro and lateral 

accelerometer. For the most considered driving maneuvers the remaining estimation errors 

can be suppressed below the one-degree margin. The exception is the J-turn maneuver on 

low-µ surface in which the sideslip angle has reached high values and vehicle has evidently 

lost the grip and experienced some significant skidding. 

The proposed memory fading adaptation of EKF of the sideslip angle estimate provides 

higher accuracy of the sideslip angle estimates in the case of the emphasized unmodeled 

dynamics effects (predominantly the roll and pitch dynamics) and in the presence of external 

disturbances such as the road bank. In the presence of emphasized sensor errors, as it is the 

case when using the standard vehicle dynamics sensors, the adaptation algorithm becomes 

less effective. In this case the simple modifications of the ratio of the longitudinal and lateral 

velocity state variables covariance can provide better estimator performance. 
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7 Reconstruction of tire cornering 
stiffness and road coefficient of 
friction 

 

Although, the estimator presented in Chapter 6 has been primarily developed for estimation of 

the sideslip angle, it can be also utilized for estimation of other vehicle dynamics variables 

and parameters. More specifically, based on the results obtained trough estimator 

experimental verification, it has been found out that the proposed estimator concept has a 

good potential for application in estimation of tire cornering stiffness and tire-road coefficient 

of friction. 

7.1 Tire sideslip angle and tire lateral force estimation 
In order to illustrate these possibilities the estimation results for some relevant driving 

maneuvers are presented below, for the nominal case of utilizing the high-quality inertial 

sensors and GPS receiver measurements. 

The reference signals for the tire sideslip angle have been derived analytically based on the 

known vehicle parameters and available high precision inertial measurements by utilizing 

two-track and single-track vehicle models. Presuming small vehicle sideslip angles β and 

related trigonometric functions approximations for small angles (i.e. ββ ≈sin  and 

1cos ≈β ), the tire slip angles for individual wheels can be obtained from the following 

equations of the two-track vehicle model [5]: 
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where t is the vehicle track, b and c are longitudinal distances from front and rear axle to 

vehicle CoG, respectively, VCoG is the vehicle CoG absolute velocity, and δ is the front wheel 

steering angle.  
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After substitution of the vehicle longitudinal and lateral velocities βcosCoGVu =  and 

βsinCoGVv = , and applying the trigonometric functions approximation for small angles 

( CoGVu ≈  and βCoGVv ≈ ), the above equations read: 
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The equivalent, lumped front and rear axes tire slip angles are obtained by averaging the 

individual tire slip angles: 
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where subscript 2 signifies the two-track model. Alternatively, front and rear tire slip angles 

reference can be derived from the single-track vehicle model as [5]:  

u
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= . (7-6) 

The tire slip angle estimates are derived from the same equation, but instead of the 

measurements, the estimated velocities and yaw rate signals have been utilized. 
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Since the tire sideslip angle and tire lateral forces are not measured, the reference signals have 

been obtained from the following algebraic expressions [25]: 
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while their estimates are readily available in the proposed sideslip angle estimator (i.e. last 

two elements of the process model state vector, see Eq. (6-6)). The tire slip angle and lateral 

tire force estimates for the slalom maneuver are given in Fig 7.1, together with the 

corresponding reconstructed, reference signals. The obtained estimates are characterized with 

a favorable accuracy. 
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Fig. 7.1 Estimates of the tire lateral forces (a) and tire sideslip angles (b) for slalom 

maneuver at 60 kph on packed snow. 
 

7.2 Cornering stiffness estimation 
Fig. 7.2 illustrates the reconstructed (i.e. calculated by using Eqs. (7-6), and (7-8)) and 

estimated tire static characteristics (i.e. estimated by using the tire force estimates of the 

sideslip angle estimator developed in Chapter 6, and tire slip angles obtained from Eq. (7-7)) 

for a slalom maneuver at road covered with packed snow . The corresponding front and rear 

cornering stiffness has been identified by applying the linear interpolation of the recorded 

lateral tire static characteristic data derived from the estimated lateral forces and estimated tire 

slip angles. The linear fitting of lateral tire static characteristic data is carried out for the 

interval of tire slip angles of ±3 degrees, corresponding to the adhesion part of tire static curve 

(Fig. 2.5). 
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Fig. 7.2 Reconstruction of the front and rear axis cornering stiffness for slalom maneuver at 

60 kph on packed snow. 
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The obtained tire cornering stiffness estimates, for number of driving maneuvers on low-µ 

and high-µ road are summarized presented and compared in Fig. 7.3. 
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Fig. 7.3 Cornering stiffness estimates in slalom maneuvers on low-mu and high-mu road 

surfaces: front axis a) and rear axis b). 
 

Based on such offline identified tire cornering stiffness parameters (shown in Fig. 7.3), 

derived by utilizing the same estimator concept used for the sideslip angle estimation in 

former Chapter and using the procedure described above and illustrated in Fig. 7.2, the 

information regarding the type of the surface can be extracted. Namely, from the obtained 

cornering stiffness estimates and according to the relation between the tire cornering stiffness 

and tire-road coefficient of friction (cf. [38,55,65]), at least the basic classification of the type 

of the surface seems to be feasible (i.e. low-µ / high-µ surfaces). More precisely the results 

presented in Fig. 7.3 obtained from a set of driving maneuvers performed on low-µ and high-

µ surfaces clearly show that the estimated cornering stiffness significantly differ depending on 

the type of the surface can be utilized for surface coefficient of friction classification. This 

effect, of increase of the tire static curve gradient with the increase of the road coefficient of 

friction has been observed and recognized for tire longitudinal static curves [23,55], but it has 

not been documented in detail for lateral tire static curves. 
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The results of on-line cornering stiffness estimation for the case of utilizing the high-precision 

IMU measurement signals and applying the direct estimation method described in [26] and 

defined by Eqs. (7-9) and (7-10) are shown in Fig. 7.4. 
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The cornering stiffness reference has been calculated from Eqs. (7-9) and (7-10) by utilizing 

the available precision IMU measurements (e.g. u, v, and ωz) and their time derivatives (e.g. 

zv ω&& and ), while the estimates have been obtained from the same equations by using the 

estimates of these quantities.  
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Fig. 7.4 Cornering stiffness estimates in the steady cornering maneuver on circular track: 

front axis (a) and rear axis (b). 
 

The results for the front and rear cornering stiffness given in the Fig. 7.4, obtained for the 

driving on a circular path on low-µ surface. The front wheel cornering stiffness is somewhat 

smaller than for the rear wheel. The high noise content in the estimated signals is induced by 

the yaw rate and lateral velocity time derivative term in the underlying Eqs. (7-9) and (7-10). 

In order to reduce the noise level in the estimated signals and reduce the sensitivity of the 

estimation to the sensor outliers some of the closed loop methods (observers), documented in 

the literature [20,26,38,65,72-74] should be implemented. 
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Finally, the feasibility of the on-line estimation of the maximum road coefficient of friction 

from the estimated maximum tire lateral force has been considered below. Namely, Fig. 7.5 

shows the measured vehicle dynamics state variables and estimated front and rear tire lateral 

forces derived from the sideslip angle estimator for a J-turn maneuver on the low-µ packed-

snow surface. 
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Fig. 7.5 Estimation of the tire forces for the J-turn maneuver: vehicle dynamics state 
variables reference signals measured by IMU (a), estimated total lateral and longitudinal tire 

forces (b), and front and rear tire lateral force estimates (c). 
 

During the time interval corresponding to the maximum lateral tire forces the longitudinal tire 

forces are relatively small and consequently the maximum coefficient of friction can be 

determined from the nominal rear tire normal force Fzr0 and the estimated lateral force limit 

according to the following equation [25]: 

0

max,
max

ˆ
ˆ

zr

yr

F
F

=µ  (7-11) 

where the nominal rear tire normal force can be calculated from the vehicle parameters by 

using the following equation: 
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bc
mgbFzr +

=0  (7-12) 

Fig. 7.6 shows that during the interval characterized with the maximum tire lateral force the 

vehicle sideslip angle is accurately estimated and it reaches values characteristic for limit of 

adhesion on snow surface. 
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Fig. 7.6 Estimation of the maximum tire lateral force and related tire-road coefficient of 
friction: estimated tire static characteristic (a), estimated sideslip angle (b), and sideslip 

angle estimation error (c). 
 

Consequently, for this particular case, the estimate of road coefficient of friction, related to 

the maximum estimated lateral tire force, equals 0.4, what correlates well with the typical 

values of the coefficient of friction for snow (i.e. 0.35-0.4, according to [25]). This result 

illustrates a good potential of such estimation concept for online implementation. 
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8 Conclusion 

 

In this thesis the vehicle yaw rate and sideslip angle estimators, based on the sensor fusion 

approach and Kalman filter methodology, have been designed. These estimators have been 

tested by means of computer simulations based on the 10DoF vehicle dynamics model. 

Moreover, the sideslip angle estimator based on the vehicle dynamic model with stochastic 

modeling of the tire forces has been verified on the realistic experimental data obtained from 

the test vehicle. 

The proposed adaptive Extended Kalman Filter (EKF)-based kinematic yaw rate estimator 

combines the approach based on two diagonally-placed accelerometers with the approach 

relying on the non-driven wheels speed sensors. Such a combined estimator, implementing 

the sensor fusion approach, takes advantage form the complementary benefits of the two 

individual estimation concepts. The major source of estimation errors for the first approach is 

the accelerometer offset that causes the drift-like estimation error, while the second approach 

cannot be used during braking and it is sensitive to the tire effective radii variations and road 

bump disturbances. The proposed estimator significantly reduces the overall estimation errors 

by utilizing the fusion concept. Accelerometers are predominantly used during yaw rate 

transients and when the accuracy of the wheel speed sensors is compromised, while the wheel 

speed sensors are utilized during the quasi-steady-state yaw rate intervals when the 

accelerometer-based estimation is sensitive to drift. 

Further improvement of the wheel speed sensors reliability has been achieved by performing 

an open-loop compensation of the dominant wheel speed sensor-based estimation errors. 

More specifically, the static and dynamic compensation procedures have been derived and 

embedded into the estimator algorithm in order to reduce the tire deflation/wear and lateral 

load transfer-related estimation errors. Furthermore, the rule-based adaptation algorithm is 

extended with the road bump disturbance detection feature, in order to remove potentially 

large, environment-related wheel speed sensors-based estimation errors. 

The performance of the adaptive EKF-based yaw rate estimator has been verified by means of 

computer simulation against the reference 10DoF vehicle dynamics model, and the obtained 

results have pointed out that in various driving maneuvers the proposed estimator provides 
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superior overall estimation accuracy when compared to performances of the individual 

kinematic estimators. The yaw rate estimation errors are mostly well below 10% for a wide 

range of driving conditions. 

The GPS and INS fusion-based kinematic sideslip angle estimator has been designed by 

utilizing the adaptive EKF methodology. This estimator combines the low sampling rate GPS-

based vehicle velocity measurements with the high sampling rate inertial sensors 

measurements (lateral acceleration and yaw rate), in order to compensate for the potentially 

large drift-like sideslip angle estimation errors caused by the inertial sensor offsets. 

The estimator performance has been tested by running the computer simulations using the 

accurate 10DoF vehicle dynamics model, and the conducted analysis has indicated that the 

estimator can be rather sensitive to small errors of pre-estimated longitudinal vehicle velocity, 

due to the static and dynamic tire radii variations. Dominant estimation errors related to the 

static tire radii variation can be effectively compensated for during the periods of straight 

driving by comparing the GPS velocity and wheel speeds measurements. Further refinements 

of the longitudinal velocity pre-estimation may include the compensation of relatively small 

dynamic errors. In order to mitigate potentially large degradation of the sideslip angle 

estimation accuracy during breaking, due to significant vehicle velocity pre-estimation errors 

related to large tire longitudinal slip, the sideslip angle is, in such conditions, estimated in the 

open-loop mode. 

The road bank effect represents a potentially large unmodeled disturbance that may reduce the 

sideslip angle estimation accuracy by inducing significant drift-like estimation errors. These 

errors are related to the additional accelerometer offset caused by gravity acceleration 

component. In order to reduce these errors, two compensation methods have been considered: 

first method modifies the EKF tuning in order to speed up the accelerometer offset estimation 

and effectively cancel the additional offset, while the second method uses road bank-related 

gravity acceleration estimate. The first method proved to be ineffective in the case of EKF 

estimates averaging, needed for compensation of the GPS measurement latency-related errors, 

that results in icreased filter response time, while the second method provides good results. 

Namely, the GPS measurement latency has proved to be a major source of the sideslip 

estimation transient errors. However, by presuming that this latency is known and that it 

remains constant over time, it can be compensated by introducing the same latency in the 

EKF prediction error calculation. 
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The proposed estimator adaptation algorithm changes the Kalman filter state covariance 

matrix in order to account for the changes in the vehicle dynamics conditions. More 

specifically, the two sets of state variables covariance parameters have been used: one for 

quasi-steady-state conditions and other for the intense dynamic behavior. The main idea of the 

adaptation is to make the sensor offset estimation faster during the steady-state conditions and 

slower during transients, where the transient intensity detection relies on the lateral 

acceleration measurement and the estimate of the lateral velocity time derivative. The 

adaptation algorithm enables adjusting optimal estimator performance with respect to 

estimator response time, and damping of the oscillations in the estimated sensor offsets and 

consequently the magnitude of errors in sideslip angle estimate. The performance of such 

fully tuned, adaptive EKF-based estimator has been tested by simulations for double lane 

change and double step-steer maneuvers. The obtained results have shown that the sideslip 

estimation error of less than approximately 2 deg is achievable for a wide range of non-

braking operating conditions. 

A vehicle dynamics model-based sideslip angle estimator has been designed by using an 

adaptive EKF. The nonlinear single-track vehicle dynamics model with five degrees of 

freedom has been utilized for the purpose of estimator design. Tire forces have been modeled 

as first-order random walk state variables. 

The estimator performance has been verified by computer simulations based on a detailed, 

two-track 10 DoF vehicle dynamics model, as well as by off-line estimator execution based 

on the experimental data recorded on the test vehicle equipped with both a high precision 

IMU/GPS unit and a standard set of the vehicle dynamics sensors. The memory fading 

algorithms have been used for making the estimator adaptive. However, when using the 

precision inertial measurement unit signals, even for the constant tuning of the KF, the 

favorable estimation accuracy have been obtained. More specifically, in the case of using the 

nonadaptive estimator design the maximum sideslip angle estimation error less than 0.5° has 

been obtained for the most considered driving maneuvers on a flat road. On the other hand, 

the adaptive estimator surpasses the accuracy of the basic, nonadaptive estimator for steady 

cornering and slalom maneuvers carried out on banked roads. Namely, in these, particularly 

challenging maneuvers, the adaptive estimator has provided the estimation errors less than 

0.5° compared to estimation errors somewhat over 1° for the nonadaptive estimator. 

In the case of utilizing the standard onboard vehicle dynamics sensors, a significant 

degradation of the estimation accuracy has been observed. However, by utilizing relatively 
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simple measurement error compensation interventions for the two most critical sensors (i.e. 

the yaw rate gyro and the lateral accelerometer) and by proper modifications of the KF tuning 

parameters, the significant improvement of the estimator performance can be achieved. More 

specifically, for the most driving maneuvers the estimation errors can be reduced to the 1° 

margin (in comparison to the 0.5° error margin for utilizing the high precision IMU 

measurement). 

The proposed memory fading adaptation of EKF of the sideslip angle estimate provides 

higher accuracy of the sideslip angle estimates in the case of the emphasized unmodeled 

dynamics effects (predominantly the roll and pitch dynamics) and in the presence of external 

disturbances such as the road bank. In the presence of emphasized sensor errors, as it is the 

case when using the standard vehicle dynamics sensors, the adaptation algorithm becomes 

less effective. In this case the simple modifications of the ratio of the longitudinal and lateral 

velocity state variables covariance can provide better estimator performance. 

It has been demonstrated that the proposed dynamic sideslip angle estimator can also be used 

as a basis for estimation of the tire slip angles, tire cornering stiffness and tire-road coefficient 

of friction. The feasibility and performance of such simultaneous estimation of additional 

vehicle dynamics variables and parameters, has been analyzed by presuming the use of high 

precision IMU/GPS sensor measurements. 
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Appendix – A 
Derivation of the Euler angles from local frame angular velocities 

For any two given coordinate frames A and B which origins coincide, the coordinate 

transformations between these two coordinate frames can be obtained through the successive 

rotations of the one of the coordinate frames (Fig. A-1) by application of the Euler angles (φ - 

roll,θ - pitch, and ψ - yaw). In this particular case coordinate frame A corresponds to the 

reference inertial frame, while the frame B is the body-fixed rotating coordinate frame with 

angular velocities about its axes (ωx, ωy, and ωz). 

A - A' A' - A''

ψ

φ

θ

A'' - B

'
1a

1a

2a

'
2a

3
'
3 aa =

'
2

''
2 aa =

''
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'
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'
1a

''
1a

''
11 ab =

''
2a

''
3a

2b

3b

xωω ≡1
yωω ≡2

zωω ≡3

Fig. A-1. Euler angles derivation from the body-fixed frame angular velocities. 

Angular velocity vector of the rotating frame B, resolved to the inertial coordinate frame A, is 

denoted as BAω (as used in [Baruh]). The velocity vector has three components, one for each 

of the successive rotations ( B'A'and,'A'A',A'A −−− ) of the inertial coordinate frame A, and 

related to the corresponding Euler angle (Fig. A-1). 

Angular velocity vector of the rotating frame B, resolved to the inertial coordinate frame A, is 

denoted as BAω (as used in [31]). The velocity vector has three components, one for each of 

the successive rotations ( B'A'and,'A'A',A'A −−− ) of the inertial coordinate frame A, and 

related to the corresponding Euler angle (Fig. A-1). 

''
1

'
23

'''''' aaaωωωω ⋅+⋅+⋅=++= φθψ &&&BAAAAABA  (A-1) 

The angular velocity vector can be resolved on the components of the rotating coordinate 
frame B, if the appropriate coordinate transform is performed by utilizing the inverse of the 
cosine transformation matrix T

321R . 

BRA 321
T=  (A-2) 
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The vectors of the successive rotational axes ''
1

'
23 and,, aaa  from the inertial coordinate frame 

A can be resolved to the rotating, body-fixed frame B components according to the following 

expressions: 

θφθφθ coscoscossinsin 3213 bbba ++−=  (A-4) 

φφ sincos 32
'
2 bba −=  (A-5) 

1
''

1 ba =  (A-6) 

When the terms from Eqs. (A-4)-(A-6) are substituted in Eq. (A-1) the angular velocity vector 

can be expressed as: 

132

321

)sincos(

)coscoscossinsin(

bbb

bbbω
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θφθφθψ
&&

&BA

 (A-7) 

After rearranging Eq. (A-7) the following result is obtained: 

3
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)coscossin()sin(

b

bbω

φθθφψ

φθθφψθψφ
&&

&&&&

−+
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 (A-8) 

According to the Eq. (A-8), the components of the angular velocity vector as functions of the 

Euler angles and in terms of the body fixed coordinate frame are obtained as: 

θψφω sin1 && −=BA  (A-9) 

φθθφψω coscossin2
&& +=BA  (A-10) 

φθθφψω sincoscos3
&& −=BA  (A-11) 

These equations, relating the angular velocities of the rotating body-fixed frame to the first 

derivatives of the Euler angles can also be written in the matrix form as: 

ΕBω &⋅=BA  (A-12) 

where [ ]Tψθφ=E  is the vector of the Euler angles and the B matrix reads: 
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The Euler angles as functions of the body-fixed frame angular velocities in a form of the 

nonlinear state-space dynamic system could be obtained as follows. 
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⎥
⎥
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where the inverse of the matrix B reads: 
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When this matrix equation is resolved on the algebraic equations and after the substitutions 

zyx ωωωωωω ≡≡≡ 321 and,,  (Fig. A-1) following expressions are obtained [30,31]: 

)tan())cos()sin(( θφωφωωφ zyx ++=&  (A-16) 

)sin()cos( φωφωθ zy −=&  (A-17) 

θ
φωφωψ
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Appendix – B 
Specifications of the RT3003 inertial measurement unit 

Model: RT3003 - two antenna unit 

Table B.1 Performance specifications for RT3003 measurement unit 
Parameter Value Parameter Value 
Position accuracy Acceleration accuracy 
CEP SPS 1.5m Bias 10mm/s2 (1σ) 
CEP SBAS 0.6m Linearity 0.01% (1σ) 
CEP DGPS 0.4m Scale Factor 0.1% (1σ) 
  Range 100m/s2 
Angular rate  
Bias 0.01°/s (1σ) Heading 0.1° (1σ) 
Scale factor 0.1% (1σ) Pitch/Roll 0.03° (1σ) 
Range 100°/s Velocity accuracy 0.05kph (RMS) 
  Lateral velocity 0.2% (1σ) 
  Slip angle (at 50kph) 0.15° (1σ) 
  Track (at 50kph) 0.07° (1σ) 

Update rate of the unit signals is in the range of 100/250Hz. 
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Appendix – C 
Vehicle dynamics model parameters 

Table C.1 Vehicle dynamics model parameters 
Parameter Description Value [unit] 
m Vehicle mass 1858 kg 
Izz Yaw moment of inertia 3515 kgm2 
b Front axis distance from CoG   1.432 m 
c Rear axis distance from CoG 1.472 m 
t Vehicle track 1.625 m 
Ixx Roll moment of inertia 655.2 kgm2 
Irc Roll center moment of inertia 521.7 kgm2 
mr Rear suspension mass 1011 kg 
br Roll damping rate 5022 Ns/m 
kr Roll spring rate 41328 N/m 
h1 Roll center height at vehicle CoG 0.4382 m 
l Wheel base 2.904 m 
rn Wheel nominal radius 0.337 m 
Iw Wheel moment of inertia 1 kgm2 
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Notation 

 
Symbol Description Symbol Description 

iC  cornering stiffness H(k) output matrix 
β  sideslip angle G(k) input matrix 

rf ll ,  longitudinal distance from front 
and rear axle to vehicle CoG 

P(k|k-1) a-priori error propagation 
covariance matrix 

xω  roll rate P(k|k) a-posteriori error propagation 
covariance matrix 

yω  pitch rate K(k) Kalman filter gain matrix 

zω  yaw rate x(k) state vector 

xa  longitudinal acceleration y(k) measurement (output) vector 

ya  lateral acceleration δ steering angle 

za  vertical acceleration Ts sampling time 
θ  pitch angle Fy vehicle lateral force 
φ  roll angle qi state variance (qi ≡ qii) 
ψ  yaw angle (heading) ri measurement variance (ri ≡ rii) 
u longitudinal velocity (body frame) )|(ˆ kkx  a-posteriori state vector estimate 
v lateral velocity (body frame) )1|(ˆ −kkx a-priori state vector estimate 
w vertical velocity (body frame) hg vehicle CoG height 
t vehicle track g gravity acceleration constant 
rn nominal tire radius Ixx roll moment of inertia 
re effective tire radius b longitudinal distance from front 

axle to CoG 
r measurement covariance c longitudinal distance from rear 

axle to CoG 
q state covariance λ adaptive fading scalling matrix 
Q state covariance matrix Γ adaptive fading measurement 

covariance scalling matrix 
R measurement covariance matrix Λ adaptive fading state covariance 

scalling matrix 
τb braking torque κ state covariance scaling factor 
αf, αr tire slip angle (front and rear) ϕ measurement covariance scaling 

factor 
m vehicle mass αad, λad scaling coefficients of SSF 

adaptive Kalman filter 
Iz yaw moment of inertia Cr innovation covariance matrix 
ηi tire longitudinal slip x~ , εx  residual (absolute error) of x 
F(k) state transition matrix xε  relative error of x 
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