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Abstract

An increasing number of vehicle dynamics control systems are being embedded into modern
vehicles in order to assure safety and comfort of driving. All of these systems require
information on the vehicle dynamics state variables (e.g. yaw rate, sideslip angle, roll rate
etc.). Some of them can be measured, while others need to be estimated based on available
measurements and appropriate vehicle kinematics/dynamics models. This thesis presents a
contribution to the research of yaw rate and sideslip angle estimation. More specifically, a
kinematic sensor fusion-based yaw rate estimator has been proposed, which combines the
wheel speeds measured by standard Anti-lock Braking System (ABS) sensors and the
measurement of vehicle lateral acceleration obtained from two accelerometers placed
diagonally upon the chassis. Similar fusion concept has been employed for development of a
kinematic vehicle sideslip angle estimator utilizing information obtained by low-cost inertial
sensors and single-antenna GPS receiver. Moreover, a sideslip angle estimator based on
vehicle dynamics model with stochastic modeling of the tire forces has been proposed and
used for concurrent estimation of other vehicle dynamics variables and parameters, such as
the tire sideslip angles, lateral tire forces, tire cornering stiffness, and tire-road coefficient of
friction. The research methodology includes: setup of appropriate kinematic and/or dynamic
vehicle models; identification, open-loop compensation, and analysis of dominant sources of
estimation errors; and design of estimators based on the sensor fusion principle by using the
adaptive extended Kalman filter. Verification of the developed estimators has first been
carried out by means of computer simulations based on an experimentally verified ten-
degrees-of-freedom vehicle dynamics model comprising the magic-formula tire model. In the
case of dynamic sideslip angle estimator with stochastic tire modeling, the estimation
accuracy has also been verified experimentally, based on the data recorded on a test vehicle
equipped with a high-precision inertial measurement unit and two-antenna GPS receiver, as
well as by using a standard set of vehicle dynamics control system sensors. In order to obtain
a favorable performance of the vehicle state variable estimation under the various operating
conditions, a rule-based adaptation of the Kalman filter state covariance matrix has been
utilized for kinematic estimators, while for the dynamic, model-based vehicle sideslip angle
estimator an adaptive fading algorithm has been implemented for adaptation of the Kalman

filter state and measurement covariance matrices.
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Procjena stanja dinamike vozila zasnovana na fuziji
senzora primjenom adaptivhoga Kalmanova filtra

U suvremena vozila ugraduje se niz sustava aktivnog upravljanja dinamikom vozila s ciljem
povecanja sigurnosti 1 udobnosti voznje. Ovi sustavi zahtijevaju informacije o varijablama
stanja i parametrima dinamike vozila poput brzine skretanja, kuta bo¢nog klizanja i kuta
valjanja, inercije i mase vozila, statickih karakteristika guma, te informacije o uvjetima na

cesti (vrsti podloge tj. koeficijentu trenja kontakta guma-podloga, kutu nagiba ceste i sl.).

Neke od ovih varijabli mogu se izravno mjeriti, dok je druge potrebno procijeniti na temelju
dostupnih mjerenja i odgovaraju¢ih modela kinematike ili dinamike vozila. Intenzivan razvoj
raznovrsnih sustava procjene (estimatora) varijabli dinamike vozila motiviran je s jedne strane
zahtjevima za smanjenjem potrebnog broja senzora, te s time povezanim smanjenjem cijene
sustava upravljanja dinamikom vozila. S druge strane, u posljednje vrijeme javlja se potreba
za poboljSanjem performansi konvencionalnih sustava procjene koriStenjem novih senzorskih
tehnologija i kombiniranjem razli¢itih modela estimatora, odnosno primjenom postupaka
sazimanja mjerenja vise razliitih senzora. Na taj nac¢in, uz odredivanje vrijednosti veliCina
koje nije moguce ili nije prakticno izravno mjeriti, takvi estimatori takoder omoguc¢uju visoku
redundanciju rekonstrukcije varijabli stanja dinamike vozila, te s time povezanu detekciju
kvarova senzora i poboljSanje ukupne pouzdanosti cjelokupnog sustava upravljanja
dinamikom vozila. Nadalje, sve veci broj senzora koji se ugraduju u suvremena vozila, kao
Sto su na primjer GPS senzori za navigaciju, inercijski senzori ili inercijske mjerne jedinice
(IMU), pruZaju nove mogucnosti u pogledu to¢nijeg 1 pouzdanijeg odredivanja dinamickog
ponasanja vozila. Temeljem dobivenih informacija moguce je predvidjeti i sprijeciti kriticne
situacije kao $to su proklizavanje kotaca, odnosno pojava podupravljanja ili preupravljanja,

odnosno gubitka kontrole nad vozilom.

Ovaj rad predstavlja prilog istraZivanju i razvoju sustava procjene brzine skretanja i kuta
boc¢nog klizanja vozila zasnovanih na primjeni adaptivnog Kalmanova filtra i nacela fuzije
(sazimanja) senzora. Pritom se razmatra i procjena popratnih parametara dinamike vozila
poput gradijenta staticke karakteristike autogume za bo¢no gibanje i1 koeficijenta trenja
izmedu autogume i podloge. Metodologija istrazivanja ukljucuje postavljanje odgovaraju¢ih
modela kinematike i dinamike vozila, analizu dominantnih izvora pogreSaka procjene
dinamickih varijabli i parametara, te sintezu i simulacijsku i eksperimentalnu provjeru

razvijenih sustava procjene (estimatora).
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Temeljna hipoteza ovog rada je da se koriStenjem koncepata sazimanja mjerenja s vise
senzora primjenom objedinjenog pristupa zasnovanog na adaptivnhom Kalmanovom filtru i
prikladnim kinematskim i dinami¢kim modelima vozila moze posti¢i kvalitetnija procjena

kljuénih varijabli stanja dinamike vozila.

Doktorska disertacija je organizirana kako slijedi. U prvom poglavlju dan je uvod u tematiku
estimacije dinamickih varijabli (varijabli stanja) modela vozila s posebnim naglaskom na kut
skretanja 1 kut bocnog klizanja vozila, te pregled stanja tehnike u podrucju estimacije varijabli
stanja i estimacije parametara dinamickog modela vozila (npr. nagiba statickih karakteristika
guma te koeficijenta trenja na kontaktu guma-podloga). Definirana je hipoteza disertacije i

navedeni su oc¢ekivani znanstveni doprinosi istrazivanja.

Drugo poglavlje daje pregled osnovnih dinamickih i kinematskih modela vozila te uvodi

osnovne pojmove vezane uz dinamiku vozila i modele gume.

Trece poglavlje opisuje osnovni (KF) 1 prosireni oblik (EKF) Kalmanova filtra te objasnjava
postupak podeSavanju parametara filtra koji ima za cilj postizanje optimalnog odnosa izmedu
brzine odziva filtra (tj. Sto tocnijeg slijedenja referentne vrijednosti u tranzijentima) i1 razine
perturbacija (Suma) u stacionarnom stanju. Ovo poglavlje takoder opisuje razli¢ite izvedbe
adaptivnog Kalmanova filtra koji se koriste za estimaciju varijabli stanja procesa s vremenski
promjenjivim parametrima, s posebnim naglaskom na ,,Adaptive Fading® izvedbu proSirenog

oblika filtra (AFEKF).

Cetvrto poglavlje razraduje problem estimacije kuta skretanja vozila zasnovane na primjeni
razli¢itih kinematskih modela za slu¢aj kada izravno mjerenje ziroskopom nije dostupno.
Razraden je i analiziran koncept kinematskog adaptivnog estimatora zasnovan na sazimanju
(fuziji) mjerenja senzora brzine vrtnje nepogonjenih kotaca i bo¢ne akceleracije (koja se mjeri
sa dva akcelerometra postavljena dijagonalno-simetricno u odnosu na teziSte vozila) uz
primjenu Kalmanova filtra. Identificirani su dominantni izvori pogreSaka kinematskog
estimatora brzine skretanja kod odvojene primjene dvaju razmatranih kinematskih modela (t;.
modela zasnovanog na mjerenjima brzina vrtnje kotaa i modela zasnovanog na mjerenju
dvaju akcelerometara). Razmatra se i razmjerno jednostavan koncept adaptacije Kalmanova
filtra s ciljem postizanja visoke tocnosti procjene za Sirok raspon radnih rezima, obzirom na
¢injenicu da se razine pouzdanosti dvaju medusobno komplementarnih kinematskih modela
mijenjaju s radnom toc¢kom. Toc€nost procjene brzine skretanja provjerena je simulacijskom
usporedbom procijenjenog signala s referentnim signalom dobivenim iz modela dinamike

vozila s 10 stupnjeva slobode gibanja.
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U petom poglavlju opisan je kinematski estimator kuta bocnog klizanja vozila zasnovan na
sazimanju mjerenja inercijskih senzora (akcelerometara i1 ziroskopa) i signala brzine vozila
dobivenog iz GPS prijamnika, takoder unutar okvira dinami¢kog estimatora zasnovanog na
Kalmanovom filtru. Pritom se GPS mjerenja sa sporom vremenskom bazom tipi¢no
presporom za izravnu primjenu u procjeni varijabli dinamike vozila koriste za periodicku
korekciju posmaka (drifta) u estimiranom signalu, a koji nastaje zbog inherentnog posmaka
signala inercijskih senzora, ¢iji su signali dostupni s brzom vremenskom bazom. Provedena je
detaljna analiza pogreSaka za razmatrane kinematske modele (tj. model vozila i model
mjerenja GPS signala) i razvijen je mehanizam adaptacije Kalmanova filtra s ciljem
poboljsanja to¢nosti slijedenja estimatora u Sirokom rasponu radnih rezima. Performanse
adaptivnog estimatora provjerene su simulacijskom usporedbom estimiranog i referentnog

signala dobivenog iz modela vozila s deset stupnjeva slobode.

Sesto poglavlje opisuje sintezu estimatora kuta bo¢nog klizanja vozila zasnovanog na
nelinearnom modelu dinamike vozila sa stohastickim modelom sila na kota¢ima, te primjeni
prosirenog oblika adaptivnog Kalmanova filtra. Navedeni koncept procjene kuta bocnog
klizanja vozila je bitno manje osjetljiv na varijacije parametara deterministickog modela gume
u odnosu na klasi¢ne estimatore, te je takoder manje osjetljiv na promjene tipa podloge (tj.
koeficijenta trenja kontakta guma-podloga), ¢ime se postize poboljSanje u tocnosti procjene
kuta klizanja. Razvijeni estimator verificiran je na eksperimentalnim podacima snimljenim na
testnom vozilu opremljenom, pored standardnih senzora dinamike vozila, i preciznom
inercijskom mjernom jedinicom i sofisticiranim GPS prijemnikom s dvije antene. Pritom su
analizirane performanse estimatora za slucaj koristenja kvalitetnih senzora za potrebe provjere
ograni¢enja samog koncepta estimacije 1 odredivanja optimalnih podeSenja filtra, te
degradacija tocnosti estimatora za slucaj upotrebe standardnih senzora dinamike vozila.
Takoder, razmotrene su moguénosti djelomi¢ne kompenzacije pogreSaka i moguénosti
poboljsanja to¢nosti procjene uvodenjem adaptacijskog mehanizma s obzirom na pogreske u

dinamickom modelu vozila odnosno u mjernim signalima.

U sedmom poglavlju razmatraju se mogucnosti primjene koncepata prethodno opisanog
dinamickog estimatora razvijenog za procjenu kuta bocnog klizanja vozila u estimaciji drugih
dinamickih varijabli 1 parametara modela, kao Sto su kutovi klizanja kotaca, odredivanja
nagiba statiCkih karakteristika gume, te klasifikaciji tipa podloge, odnosno grube procjene

koeficijenta trenja kontakta izmedu gume i podloge.



Kljuéne rijeci: Procjena varijabli stanja, dinamika vozila, kinematika vozila, Kalmanov filtar,

brzina skretanja vozila, kut bo¢nog klizanja vozila, adaptivno filtriranje, fuzija senzora.
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Introduction

1 Introduction

1.1 Motivation

Over the last two decades vehicle dynamics control systems, such as the Anti-lock Braking
System (ABS), the Electronic Stability Program (ESP) and the Active Roll Control (ARC)
have experienced an accelerated development. These systems are aimed at stabilizing the
vehicle behaviors during critical cornering, braking, and accelerating maneuvers, thus
facilitating enhanced vehicle handling, safety, and comfort performance [1,85-87]. These
systems require the knowledge of relevant vehicle state variables and dynamics parameters, as
well as the information on road condition (e.g. tire-road friction and road bank angle).
However, some of these vehicle dynamics variables, such as the vehicle sideslip angle, are
difficult to measure or may require expensive sensors whose application is limited to test
vehicles. Therefore, they need to be estimated based on available measurements and a known
kinematic or dynamic vehicle model. Having this in mind, the emphasis of this work will be
given to design of advanced, sensor fusion-based yaw rate and sideslip angle estimators by

using the adaptive Kalman filter methodology [2-4].

The reference mathematical models used for vehicle dynamics state estimator design are
divided into kinematic and dynamic models, and, consequently, estimators can be categorized
as kinematic, dynamic and combined. The essential difference between these estimators is
that the kinematic estimators do not require knowledge of many, often time-varying vehicle
dynamics and tire model parameters (e.g. vehicle mass and tire cornering stiffness), while the
dynamic estimators are more robust to sensor offsets and road bank disturbances. The most
commonly used vehicle dynamics model is the simple, linear, single-track (bicycle) model
[5], which, unlike the more complex nonlinear two-track model, neglects the effects of roll
and yaw dynamics to tire forces. The linear model accurately describes vehicle motion while
operating within the linear region of tire lateral static curve, which in the critical case of
understeering and oversteering conditions (when the lateral tire static curve saturates) shows
significant deviations from the actual vehicle behavior thus introducing potentially large

estimation errors.
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1.2 State of the art

Overview of the state of the art in estimation of essential vehicle dynamics state variables and
parameters that are in the focus of the research documented in this thesis (i.e. the vehicle yaw
rate and sideslip angle, tire cornering stiffness, and tire-road contact coefficient of friction) is

given in the following Subsections.

1.2.1 Yaw rate estimation
Vehicle yaw rate is typically measured by a gyroscope sensor. However, in order to reduce

the cost of low-end production vehicles, yaw rate can be estimated by utilizing the
measurements from other readily available and/or less expensive sensors and appropriate
kinematic and dynamic vehicle models. Kinematic yaw rate estimation approaches are
typically based upon: (i) non-driven wheel speed measurements [4,6,7], (ii) lateral
acceleration measurement from single accelerometer placed in the vehicle center of gravity
(CoG) [6], and (iii)) measurements of two accelerometers placed outside of CoG [8,9].
However, the approach (i) is sensitive to variations of the effective tire radius and cannot be
used during braking, the method (ii) yields accurate estimates only for quasi-static conditions
of constant or slowly changing yaw rate, while the approach (iii) is generally sensitive to
accuracy of sensor placement and orientation. Moreover, the method (iii) with laterally placed
sensors [8] cannot provide the yaw rate sign and has a relatively unfavorable signal-to-noise
ratio, while for the longitudinally placed accelerometers [9] the estimator is highly sensitive to

sensor offsets resulting in emphasized drift-like estimation errors.

Dynamic yaw rate estimators are based on appropriate linear or nonlinear vehicle dynamic
models. In [8] the Kalman filter is used in order to combine the kinematic approach (iii) and
dynamic estimation based on the linear “bicycle” model of vehicle dynamics, while in [6] the
initial estimate obtained from the two kinematic estimation approaches (i) and (ii) is used as
an input to a nonlinear dynamic estimator producing the final estimate. The review of
available literature has shown that neither a detailed comparison of lateral, longitudinal, and
possibly diagonal configurations of dual accelerometer-based kinematic yaw rate estimators
nor a systematic analysis of estimation errors and their compensation has been performed yet.
In addition, a detailed analysis of combining different kinematic estimation approaches in
order to design a robust, vehicle dynamics model-free, yaw rate estimator has not been

proposed.



Introduction

1.2.2 Sideslip angle estimation
Even though the vehicle sideslip angle can be directly measured by optical speed-over-ground

sensors, this is impractical due to high sensor cost, so that the sideslip angle is typically
estimated in production vehicles. Numerous estimation approaches from the literature
typically use the available measurements of vehicle dynamics state variables, obtained by
inertial sensors (INS), GPS receivers, or inertial measurement units (IMUs), and appropriate

kinematic and dynamic vehicle models.

The commonly found techniques used for the kinematic sideslip angle estimation include
the use of direct integration of standard ESP sensor readings for design of open-loop [1,10,11]
or closed-loop [12,13,79] observers, or application of Inertial Measurement Unit (IMU) and
appropriate, more complex 6DOF kinematic models is considered [14]. The same kinematic
models are used in estimators based on GPS and inertial sensors fusion [15-17,88], wherein
the low-rate GPS signals are typically used for the correction of emphasized drift-like
estimation errors due to offsets in high-rate INS measurements. There are two basic concepts
of kinematic GPS/INS fusion-based sideslip angle estimation. The first one uses the low-cost
single-antenna GPS receiver to estimate the yaw rate gyro bias and improve the estimation
accuracy. The second approach is based on a more expensive two-antenna GPS receiver,
which provides direct low-rate sideslip and roll angle measurements, thus enabling an
effective compensation of road bank and sensor bias-related estimation errors. An alternative
approach to sensor bias estimation through a Recursive Least Square (RLS)-based estimator is

given in [13].

The dynamic model-based estimation concepts include: (i) approaches based on utilization
of nonlinear vehicle dynamics models and nonlinear observers and known tire road friction
model [10,11], (ii) application of vehicle dynamic model with linear [7-9] or piecewise linear
[2,3] tire characteristics and various types of observers, and (iii) application of nonlinear
vehicle dynamics model with stochastic description of tire forces (e.g. random-walk state
variables [18,20, and 28] or Gauss-Markov tire models [27]) as in [20] where the sliding
mode-based tire forces estimator has been cascaded to an extended Kalman filter-based

estimator of sideslip angle and cornering stiffness.

Combined estimators are aimed to benefit from the complementary advantages of kinematic
and dynamic vehicle models and they are described in [1,10,11,21,22]. More specifically, the
piecewise-linear tire model and a single-track vehicle model are combined with kinematic

model-based direct integration approach in [10]. In [22] the kinematic, sensor fusion-based
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estimator is proposed based on a linear vehicle/tire dynamic model fed by a low-cost single-

antenna GPS receiver and standard INS signals.

In general, it can be concluded that the kinematic model-based sideslip angle estimators are
highly sensitive to sensor offsets and road bank disturbances, resulting in potentially large
drift-like estimation error. On the other hand, estimators using dynamic models with
analytical or semi-empirical tire models are sensitive to model parameter uncertainties and
unmodelled dynamics. The results in [22] indicate that for the presented combined estimator
using a linear vehicle dynamics model predominant estimation errors can be expected for
vehicle operation outside of the tire static curve linear region, with particular emphasis given
on the requirement for tire cornering stiffness estimation. Having this in mind, and based on
the given literature overview, it can be concluded that there are still significant possibilities
for further research on: combining the kinematic estimators based on a fusion of low-cost
GPS and standard INS. More specifically in the reviewed literature, the GPS/INS based
sideslip angle estimators are mostly focused on the approach using the difference between the
vehicle heading and course angle, and less on the methods relying upon the vehicle lateral and
longitudinal velocities and underlying kinematic model. The former method typically requires
the application of costly two antenna GPS receivers. Moreover, the systematic and thorough
analysis of low cost GPS/INS-based kinematic sideslip estimator has not been carried out in

the available literature yet.

The dynamic model-based sideslip angle estimators using the nonlinear vehicle dynamics
model with stochastic modeling of tire are, unlike the ones using the deterministic models,
robust against the uncertainties of tire model parameters and do not require the information on
the tire-road interface coefficient of friction [29]. This concept, has been initially introduced
in [18,20,28] for tire-road forces and coefficient of friction estimation. In this thesis an
extended Kalman filter-based sideslip angle estimator has been proposed, which is based on a
nonlinear single-track vehicle dynamics model with stochastic description of lateral and
longitudinal tire forces. The proposed reduced-order estimator concept, unlike the one
described in [18], deals primarily with the vehicle sideslip angle estimation, and uses the
vehicle longitudinal velocity as an additional measurement in order to increase the estimator
accuracy in the presence of braking torque measurements inaccuracies and uncertainties of

vehicle dynamics model parameters.
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1.2.3 Estimation of other vehicle dynamics variables
Although the main focus of this thesis is on estimation of yaw rate and vehicle sideslip angle,

the same methodology can be directly or indirectly applied for estimation of other vehicle
dynamics variables. Consequently, a short overview of tire cornering stiffness and tire-road

friction coefficient estimation methods will be given hereinafter.

The front and rear tires cornering stiffness constitute the essential parameters of the
linearized, analytical tire model commonly utilized for formulation of the simplified, single-
track vehicle dynamics model (i.e. the "bicycle" model). The common tire cornering stiffness
estimation methods [26,82,89] include: (i) direct method utilizing the state-space equation of
the bicycle model, and its modifications (i.e. the lateral acceleration method, rdot method, and
beta-less method) and (ii) transfer function method (i.e. utilizing the transfer function between
steering input and yaw rate). Although direct method is straightforward and simple, the main
problems regarding its implementation are related to the existence of singularities (e.g. when
the vehicle is driving in straight line) and requirements for measurements or estimates of
vehicle lateral velocity (i.e. vehicle sideslip angle) and derivative of the vehicle yaw rate. The

most frequently used modification in the literature is beta-less method [19,20].

The tire-road friction coefficient is important to be estimated as an essential environmental
parameter which determines the lateral tire force limits and consequently the margins of the
safe, adhesion region [10]. Some methods used for estimation of the friction coefficient are
based on monitoring the road surface by a sensor (e.g. camera, ultrasound, or temperature
sensors) and running the classification algorithm to appoint/select the adequate surface type
and corresponding friction coefficient. The alternative approaches are based on utilization of
the vehicle and tire dynamics and related effects such as: tire tread deformation, wheel speed
frequency content, longitudinal forces vs. tire slip ratio, front tire self-alignment torque etc.
(see [25] and references therein). A robust estimator of road friction coefficient by utilizing

both lateral and longitudinal vehicle dynamics is proposed in [25].

1.3 Hypothesis

Primary research objectives of this thesis are as follows: a) design of adaptive kinematic yaw
rate estimator based on fusion of the dual diagonally-positioned accelerometer and standard
non-driven wheel speed sensors measurements, b) design of kinematic sideslip angle

estimator based on fusion of the standard inertial sensors and low-cost GPS receiver, and
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c) design of adaptive sideslip angle estimator which combines the kinematic estimation

concept with estimation based on dynamic vehicle model and stochastic tire force model.

The main hypothesis is that by using sensor fusion methodology and implementation of the
adaptive Kalman filter utilizing the appropriate kinematic and dynamic vehicle models, the

more accurate estimation of the key vehicle dynamics state variables can be achieved.

1.4 Thesis overview

This thesis deals with the design, implementation, and testing of vehicle dynamics state
variable estimators with emphasis on yaw rate and sideslip angle estimation through a sensor
fusion approach based on utilization of kinematic or dynamic models and an adaptive Kalman
filter. Chapter 2 introduces the main concepts of the vehicle dynamics theory, including
definitions of different coordinate frames used for describing vehicle motion and formulations
of vehicle kinematic and dynamics models, suitable for designing the estimators of relevant
vehicle dynamics state variables. The Kalman filtering methodology, repeatedly used within
this thesis for design of the estimators of various vehicle dynamics state variables, has been

overviewed in Chapter 3.

Development of the sensor fusion-based adaptive yaw rate estimator utilizing an Extended
Kalman Filter (EKF) has been described in Chapter 4. First, a detailed comparative analysis
of the dominant sources of estimation errors has been conducted for each of the individual
kinematic estimator concepts: the estimator based on the tire speed measurements and the
estimator utilizing the two accelerometers placed in different configurations (lateral,
longitudinal, and diagonal ones). Implementation and verification of the proposed kinematic
estimators has been carried out by means of computer simulations in Matlab/Simulink
environment, based on a detailed, experimentally-validated vehicle dynamics model with ten

degrees of freedom (10 DoF) [23].

In order to be able to perform a detailed analysis of the accuracy of the proposed dual
accelerometer-based yaw rate estimator and identify the major sources of estimation errors, a
3D acceleration measurement model is developed [30]. This model yields the acceleration
measurements of an accelerometer arbitrarily placed on the vehicle chassis. In analyzing the
estimator performance the impact of accelerometers configurations, unmodeled roll and pitch
dynamics, precision of sensor placement/alignment, and the sensor offsets are taken into
consideration. The analysis of performance of kinematic estimator based on non-driven wheel

speed measurements is also carried out and dominant sources of the estimation errors are
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identified, such as those related to the longitudinal wheel slip due to braking, variations of tire

effective radius, tire dynamics, and disturbances due to road bumps.

An adaptive extended Kalman filter-based yaw rate estimator using fusion of the above two
kinematic approaches is designed, and Kalman filter adaptation mechanism with respect to
operating conditions is developed. The performance of such combined kinematic estimator is
tested by means of computer simulations and compared with the performances of the
individual estimators. Parameter tuning of adaptation mechanism and Kalman filter
covariances is carried out in order to obtain more accurate estimation over a wide range of

operating conditions.

Chapter 5 deals with the development of a kinematic sideslip angle estimator based on the
sensor fusion methodology by means of an adaptive extended Kalman filter (AEKF). The
fusion is based on combining measurements from standard automotive ESP sensors (i.e. the
measurements of lateral acceleration, yaw rate, and wheel speeds) with vehicle velocity

measurements acquired from low-cost single-antenna GPS receiver with a low sampling rate.

The vehicle longitudinal velocity pre-estimator based on non-driven (rear) wheel speed
measurements is designed, and the impact of velocity pre-estimation accuracy on the quality
of final sideslip angle estimation is investigated. The virtual sensors models within the Matlab
simulation environment based on 10 DoF vehicle dynamics model [23] is implemented, with
the emphasis on modeling of inertial sensors measurements and GPS-based vehicle speed
measurements. The relevant error sources, with emphasis on inaccuracies and variable delays
of GPS-based vehicle speed measurement, inertial sensors offsets, and road bank

disturbances, are analyzed.

Furthermore, a comprehensive analysis is undertaken in order to gain the required insight in
the benefits of utilizing the multi-rate Kalman filter for fusion of high-rate inertial sensors
(INS) with the low-rate GPS receiver. The inertial sensors offsets are modeled as random-
walk type state-space variables. The Kalman filter adaptation mechanism based on covariance
matrix adaptation is implemented, in order to achieve a favorable trade-off between the
estimator response time and noise suppression capability. The performance of the proposed
adaptive kinematic estimator is analyzed by means of computer simulations for representative
driving maneuvers (e.g. steady cornering, braking in cornering, and double lane change).
Adequate sets of Kalman filter parameters are determined for different operating conditions,
and the developed adaptation algorithm, aimed at increasing the overall estimation accuracy

over a wide range of operating conditions, is tuned.
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In Chapter 6 another approach in sideslip angle estimation is considered, which is based on a
nonlinear vehicle dynamics model and stochastic modeling of tire forces. Such approach does
not require the knowledge of deterministic tire model (i.e. tire characteristics), and it is thus,
not sensitive to tire model parameters uncertainties. The estimator is verified in off-line mode
based on a wide set of experimental data acquired from the instrumented test vehicle. The
estimator accuracy has been analyzed by identifying the estimator sensitivity to measurement
errors and vehicle model uncertainties. Moreover, the estimator performance degradation has
been analyzed in case of using the standard set of the vehicle dynamics sensors instead of
high performance inertial measurement unit that is typically being used in the test vehicles. In
order to improve the estimation accuracy, adaptation of the Kalman filter has been
implemented by utilizing the switching off the estimator in conditions of decreased
observability (i.e. straight driving) and adaptive fading methodology to mitigate estimation

errors caused by unmodeled disturbances (i.e. decrease of the model reliability).

Chapter 7 considers the use of sideslip angle and tire lateral force estimates obtained by the
estimator designed in Chapter 6 for application to concurrent estimation of tire cornering
stiffness and tire/road friction coefficient, as two essential parameters used in describing
vehicle dynamics. The aim of this chapter is to provide the initial formulation of the

estimation concepts and to stipulate the feasibility of such approach.

In Chapter 8 the main conclusions are given, as a summary of concluding remarks included

in individual Chapters.
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2 Vehicle dynamics

2.1 Coordinate frames

The rigid body movement can be described by a set of the kinematics equations containing
translational and rotational velocities and accelerations [31]. In order to be able to write these
equations, an appropriate coordinate frames need to be defined. The steady, inertial coordinate
frame (X Y Z) is used as a reference frame (Fig. 2.1). The vehicle body fixed coordinate frame
(X» Y Zp) 1s placed upon the moving object, with its origin in the body center of gravity
(CoG) and its axes (x, y, and z) pointing in forward, lateral (on the left side), and upward
direction.. Triplet of unit vectors uniquely defines the Cartesian coordinate frame (i, j, and k
for inertial coordinate frame, and iy, ju, and k;, for body-fixed frame). Euler angles (¢, 6, and
) are defined in the inertial reference coordinate frame and angular velocities (@, ®,, and

@.) are defined in the body-fixed frame as shown in Fig 2.1.

ZA
\)l/l X,Y,Z —» stationary coordinate axes
e .
i, i k —> unitvectors
¢ O w —> "Eulerangles" (heading, attitude, bank)
5
kl\
¢
Y,
5
. X
J
Y
o

Yy: Z, —> vehicle body-fixed coordinate axes

g

X, »

lzb —» body c.f. unit vectors

w, @, @, —> rollrate, pitch rate, yaw rate

Fig. 2.1 Coordinate frames.

When analyzing the simple case of a pure rotational movement of the object and presuming
that the origins of reference and body-fixed frame coincide, the relation between the fixed-
point coordinates in these frames can be expressed by application of the Euler angles. The

Euler angles represent the successive rotation angles of the corresponding axes of the inertial

9
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coordinate frame required to match the inertial frame with instantaneous body-fixed frame
(detailed derivation of Euler angles [31] from the angular velocities of the body-fixed frame is
given in Appendix A). Namely, the term “Euler angles” is typically used for the particular
sequence of successive axes rotations (3-1-3), but for the automotive application the rotational
sequence (3-2-1 NASA Standard Airplane) is used as more appropriate. Here, the numbers
represent the corresponding axes rotations (e.g. 1 about x axis, 2 about y axis, and 3 about the
z axis). Also, the angles ¢ 6 and y are in automotive applications known as: heading,
attitude, and bank respectively [31], but most authors in the field of vehicle dynamics control

(e.g. [1,17,23,32]) use different nomenclature: roll, pitch and yaw angle, respectively.

2.2 Vehicle dynamics models

Mathematical models of the vehicle dynamics are required for development and evaluation of

vehicle dynamics controllers and estimators.

2.2.1 Dual-track model
The dual-track vehicle dynamics model with six degrees-of-freedom (6 DoF) [5,23], defined

by Egs. (2-1) to (2-6) and illustrated in Fig. 2.2, gives a precise description of the vehicle
dynamics (it is often referred to as a 10DoF model, where the four wheel rotational speeds are
typically considered as four additional states). This model defines the vehicle linear

(longitudinal, lateral, and vertical) and rotational motion (roll, pitch, and yaw).

Fig. 2.2 Two-track vehicle dynamics model.

10
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4
m@—ve,) = F, (2-1)
i=1
4
m(+uw,)=Y F, (2-2)
i=1
4
mv=>F,, (2-3)
i=1
. t t
Ixa)x =5(le +F23)_5(F22 +Fz4) (2_4)
[ya.)y = _lj(le + FZZ) + lr(Fz3 + Fz4) (2_5)
. t t
Iza)z :lf(Fyl +Fy2)_lr(Fy3 +Fy4)_E(Fx1 +Er3)+E(Er2 +Fx4) (2'6)

where 1., 1, and L. are roll, pitch, and yaw moment of inertia, respectively. When compared
with the 10DoF model, derived in [23] and used for simulation analysis in this thesis, the
above vehicle dynamics model does not take into account the inclination of roll axis and
position of the roll center above the vehicle CoG. The four additional state equations describe

the dynamics of the four individual wheels [23]:

]Wd)w,[ = z-D,[ - Ft r l = 17' . '74 (2-7)

where 7, is the wheel moment of inertia, r,, is the wheel effective radius, and 7p; is the wheel

driving torque.
The tire forces F; and F); are obtained from the appropriate tire models (e.g. Magic formula

model [33]) as a function of the longitudinal slip 7, the lateral slip ¢, and the normal load F~;
defined by equations (2-12a) to (2-12d). Here the subscript index i designates the individual
tire/wheel (1 = front-left, 2 = front-right, 3 = rear-left, and 4 = rear-right, Fig. 2.2) while the

superscript ¢ denotes the tire coordinate frame.

1, —U; il
n,=——— where u, =u+(-1)' —o, (2-8)
u; 2
a, =0, —atan - where v, =v+/ 0., v;,=v-Il.0.,and 6,, =0 (2-9)
" .

1

The tire forces are transformed to the vehicle body coordinate frame by the following

equations:
F,=F,cosd,—F,sino, (2-10)
F, =F;sing, +F) coso, (2-11)
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The tire vertical forces F.; can be determined, in the case of neglecting roll, pitch and heave

dynamics, from the following expressions [34,35]:

F,=—tme besp M g (2-12a)
1o, 1y as 2, +zr),:1 “
lmg 4 4
F. = . 2-12b
2, +1) 2t; 2(1 +z Z ( )
/ mg 4 4
F, = 2-12¢
= 2(1 +1) 2 Z Z ( )
l h 4 4
Foo_ume (2-12d)

o, w1 ZtZ‘ 2(, +I)Z
where A, is the center of gravity height. The first right hand side terms in Eqgs. (2-12) represent
the static weight-relatednominal values of individual tire normal forces Fi. More reliable
normal tire force dynamics model, typically used for the tire forces simulations, includes
dynamic effects related to the roll, pitch, and heave motion and also incorporates the vehicle

chassis suspension dynamics models (linear or nonlinear). Such model is documented in

literature [23,35] and used by the researchers in the field [18,36].

2.2.2 Single track "bicycle model"

The most commonly used vehicle dynamics model in the field of vehicle dynamics control
and estimation is single-track vehicle dynamics model (so-called “bicycle model™) [5], which
is illustrated in Fig. 2.3. Within this simplified two-degree of freedom model (2 DoF), the two

wheels on each axis (i.e. left and right wheels) are lumped together.
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Fig. 2.3 Single-track ("bicycle") vehicle dynamics model.

The bicycle model is based on the following differential equations describing the vehicle

lateral and yaw motion (cf. Egs. (2-2) and (2-6)):
m(V+uw )=ma, =F, +F, (2-13)
l,o,=I1,F,-IF, (2-14)
where Fyy=F,; + F,, and F), = F,; + F,, are lumped lateral forces at the front and rear axis of
the vehicle. This model neglects vehicle roll and pitch dynamics, and utilizes the linear model
of the tire forces. In the linearized model, the lateral forces acting on the front and rear axes

are modeled as linear functions of the wheel slip angle, defined by Egs. (2-8) and (2-9),

wherein small angle-approximations of trigonometric functions have been applied:

[0,
Fy=Cia,=C0-f~ v (2-15)
lo,
F,=Ca, = cr(— B +7j (2-16)

where £ is the vehicle sideslip angle (Fig. 2.3), Crand C, are equivalent front and rear axis
cornering stiffness, while oy and o, are front and rear wheel slip angles of a single-track
vehicle model derived by presuming that the vehicle chassis and wheels have identical
velocities at wheel ground contact point [5]. Thus, the velocity of the front wheel/road contact

point is obtained as:

13
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Vi sin(é‘ —a, ) =Vsinf+1, 0,

2-17
Vi cos(é' —-a, ) =Vcosp ( )

where V' denotes the vehicle CoG velocity (V =V, , Fig. 2.3). By dividing the expressions in

Eq. (2-17) the following equation is derived:

Vsinf+!. .o .o
#:tanﬂ+ L (2-18)
u u

tan(5 —a, ) =

As the small angles assumption holds for a stable vehicle (i.e. (5 -a f)<< , @, <<, and

f <<), the expression for front axis wheel slip angle reads (see Eq. (2-15)):

[0,
a,=6-p- (2-19)
' Vv
Similarly, the equations for the rear wheel are obtained:
v, sina, ==Vsin S+ o,
(2-20)

v,.cosa, =Vcosf

l.o,-Vsinff o

tana, = ~——=— —tan 2-21
' V cos B Vcos B p (2-21)
l
o =—f+ % (2-22)

By substituting the expressions for the front and rear tire lateral forces (Egs. (2-15) and

(2-16)) into Egs. (2-13) and (2-14), the following equations are obtained:

m(\'/+ua)z)=Cf[5—,B—lf;)ZJ+Cr(—ﬂ+Z";)Zj (2-23)

. lfa)z |
Lo, =1,C/| === |=1C, |-+ = (2-24)

Furthermore, by presuming that the small sideslip angle # = atan - the approximations S = v
u u

and u = V' can be applied, Egs. (2-23) and (2-24) can be rewritten as:

m(+uw,)=—>(C, +C,)=2(,C, —1.C,)+5C, (2-25)
u ’ u ’
- v @, 2
Lo, =——(1,C, ~1.C)-—=(;C, +1}C)+51,C, (2-26)
u ’ u

After rearranging the above equations, the well-known state-space formulation of the bicycle

model is obtained:

14



Vehicle dynamics

. C,+C, 1,C,-1.C, C,
p=——t Ty, L T LS (2-27)
mu mu m
1,C, -1.C, I’C,+IC l,C,
b, =—LSL Ty T Ty L LS (2-28)
ul ul 1,

Alternatively, if the sideslip angle is to be used as a state variable, instead of lateral velocity
and the approximate expression [ = Y holds, the following equation for the sideslip angle
u

first time derivative can be obtained:

AL (2-29)
u

By combining Eq. (2-29) with Egs. (2-27) and (2-28), the following model equations are
obtained (cf. [19]):

C,+C, LG -G

,B=— -0 ————0. +—L¢s (2-30)
mu mu mu
[,C,—-1C, I’C, +I1°C [.C

a')z —_ S e I f rr 0, + S S (2_31)
I ul I

An alternative approach of sideslip angle modeling for application in the estimator design is
based on utilization of the piecewise-linear tire model [10], instead of traditional, linear tire

model approximation defined by Egs. (2-15) and (2-16).

P Q
N

______
e

Frol-f-f

Fig. 2.4 Bilinear tire static curve model [10].

The nonlinear tire static curves have been approximated by piecewise-linear curves [10] in a
way that the two intervals (P and Q) are defined; first corresponding to the adhesion
conditions coinciding with small tire slip angles «, and the second interval representing the

sliding conditions present at higher values of tire slip angles. P interval is equivalent to the
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traditional linearized model. Based on this bilinear tire model, the lateral forces in P

(adhesion) and Q (sliding) intervals are defined as:

[0,
Fyp=a,Cp=|0=-F-——]C, (2-32)
o,
F)’VP :a"Cﬁ? - _ﬁ+ u Crp (2-33)
lfa)z
Fop=la,—a,)C, +F,=|6-p- gy |Cy + Fpg (2-34)
o,
FyrQ:(ar_aVO)er+F’O: _ﬂ+ u ) er+FrO (2'35)

By combining the above equations, the expressions for the lateral tire forces, which are valid

in both operating intervals, can be derived as:

[, o,

Fyf:(af_afO)Cf +F_m=[5—ﬂ— —a_m]Cf+Ff0 (2-36)

u

lra)z - arOer + FrO (2-37)
u

Fyr = (ar - arO )Cl + Fr() = (_ ﬂ +
wherea 4, Fy, @,,, and F,,are known constants and

Ch for Ay, S g,
C,, = (2-38)
Chn fora, >a..,

Inserting expressions for the lateral forces (2-36) and (2-37) into Eq. (2-13) yields:

[0,

ma, :(é—ﬂ— —afoch+Ff0+[—ﬁ+lf&—a,,o]c,+ﬂo (2-39)
u

u
After rearranging the above equation reads:

1,C,-1.C,

u

ma, =-pB(C, +C, )—[ Ja} +C,5-a,,C, —a,,C, +F, +F, (2-40)

Finally the expression for the sideslip angle can be expressed as:

B

y

! LG v seaC C +F, +F,| (2-41)
= —-ma, ————w_+ ~—a —a,,C, +F, + -
Cf +Cr u z f fo~r r0 ™~y f0 r0

wherea , w., u, and o represent the measured vehicle dynamics (state) variables.
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2.3 Tire characteristics

Tire characteristics are integral part of every vehicle dynamics model. In general, there are
three types of tire characteristics used for formulation and design of the vehicle dynamics
state and parameter estimators [33]: analytical, empirical, and stochastic (e.g. tire forces
modeled as random walk type or stochastic variable or Markov process [18,27]). The
analytical models can be further classified as linear, piecewise-linear or nonlinear, while the

empirical and stochastic models are typically nonlinear.

Fig. 2.5 shows the lateral and longitudinal static tire characteristics of a nonlinear, tire model

as a function of the tire slip angle ¢, longitudinal slip 7, and normal load F..

5 8
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Fig. 2.5 Tire static characteristics [23,34].

The lateral static curves from Fig. 2.5 are obtained from the Magic formula model [33]. The
tire cornering stiffness coefficient C; (see Eqgs. (2-15) and (2-16), and Fig. 2.4) is defined by
the tire lateral force static curve gradient at zero tire slip angle (i.e. F\(a) curve slope at its
origin). As shown in previous Subsection, the cornering stiffness is one of the essential
parameters of the linearized tire model. The uncertainty of tire cornering stiffness (front and
rear), along with the uncertainties of other vehicle dynamics model parameters (e.g. vehicle
mass and yaw moments of inertia), constitutes the main source of the errors in estimation of
the vehicle states relying on such model. Moreover, the bicycle model cannot account for the
effects of the roll and pitch dynamics, which in this case represent the disturbance. Therefore,

it cannot be effectively used in case of the vehicle driving on the banked road. Also, it should
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be noted that the linearized vehicle dynamics model is valid for the initial interval of the tire
lateral static characteristics (i.e. linear, adhesion region, characterized with the small sideslip
angles, in which the vehicle stability is well preserved). On the other hand, when vehicle
approaches to the limit of the adhesion region and when it can become unstable the linearized

model becomes unreliable.
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3 Kalman filter

Kalman filter is a recursive estimator of state variables of the linear stochastic processes based
on the noisy and frequently incomplete set of measurements implemented in the so-called
predictor-corrector form [2, 3, 24, 37]. It has been developed in 1960's by a Hungarian
mathematician R. E. Kalman [24] and successfully implemented in diverse applications
ranging from inertial navigation and tracking, sensor calibration, manufacturing and
economics, to signal processing, state variable and parameter estimation of dynamics models,

nonlinear model predictive control etc. [2, 37].

3.1 Basic Kalman filter

Basic form of the Kalman filter is designed for application in estimation of states of the linear,
time-variant, stochastic systems [24]. More specifically, the MIMO (“Multiple Input Multiple
Output”) type of such linear, stochastic, discrete-time systems can be represented by the

process model illustrated in Fig. 3.1, and described by the following matrix equations [2]:
x(k)=F(k —1)x(k—1)+ Gk —1)u(k —1)+ w(k 1) (3-1)
y(k) = H(k)x(k) + v(k) (3-2)

where x € ‘R" is the process state variables vector, u € R” is the control inputs vector,

y € R” is the measurements vector, w € R" and v € R” are process and measurement noise

vectors respectively, F

nxn

is the state transition matrix, G, is the input matrix, H  is the

nxp n

output or measurement matrix, and index k represents the sampling step.

v(k-1) w(k)
+ +
k
L b cuen G P y®)
+ x(0) § *
v
xe-1) [

F(k-1) [¢—— q

Fig. 3.1 Time-variant stochastic MIMO process model.
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The discrete-time Kalman filter is utilized for estimation of the state variables of the process
defined by Egs. (3-1) and (3-2), under presumption that the process and measurement noises
w; (i=1,...,n)and v; (j = 1,...,m) are Gaussian probability density distribution type random
signals' (i.e. p(w;)=N(0,q,) and p(v,)=N(0,r,)), characterized by zero mean values and
unambiguously defined covariances g; and r; Moreover, it is assumed that the measurement
and the process noise vectors are independent (i.e. uncorrelated) and also that the individual
elements of the process noise vector and measurement noise vector are uncorrelated, which

can be formally expressed by the following expressions:
E(w(k))=0, E(v(k))=0
The E <x> = X represents the expectation (mean value) value of the random variable x (i.e. the

first order moment of random variable x).
E(w (kW (k) =0, Vij

q;,, for i=j
E<W[ (k)wj (k)> - {1 for i#j

O K

1, for i#j
Consequently, the state and measurement noise covariance matrices Q and R, for such a case

are defined as:

Q... (k) = E(w(k)w’ (k)) = cov(w(k)

(3-3)
= diag([var(wl) var(w,) - Var(Wn)] ) = diag([‘]l q, - qn])
R, (k)= E(v(k}v" (k)) = cov(v(k)) (3-4)
= diag ([var(v,) var(v,) - var(v,)])=diag([r, r - r,])

Diagonal elements of the Q(k) and R(k) matrices correspond to the variances of the individual
elements of the state and the measurement noise vectors w and v, respectively. The elements
of these two matrices represent the main tuning parameters of the Kalman filter, as shown

bellow.

As mentioned in the chapter introduction, Kalman filter is a kind of the predictor/corrector
recursive algorithm, and it is composed of the two distinctive estimation stages: the model

based prediction (i.e. time-update) stage and measurement correction (i.e. measurement-

! Gaussian type random variable probability density distribution is defined as:
p(x) = (U 2;;)_' exp(f (x—x) /202)
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update) stage, which also requires on-line calculation of optimal Kalman filter gain based on
the presumed covariance properties. The Kalman filter algorithm for the linear, stochastic
MIMO state-space process model defined by Egs. (3-1) and (3-2) and illustrated in Fig. 3.1 is
described by a block diagram given in the Fig. 3.2.

P(k| k-1 -
F(k—1)P(k —1] k—1)F (k —1)+Q(k ~1) 4_g> P(k|k-DH (k) —

H(k)P(k | k—1)H" (k) +R(k) K(k)

1P(0]0)
P(k—1|k-1) y P(k | k) eJ
. 1-K(OHK)IPKk | k-1
7 K [ (k)H(K)]P(k | )C_
a
y(k)
% Y(klk—1)
H(k) [— K(k)
+
u(k) + X (klk-1) r + X(k| k)
—| ¢! > G(k-]) o >_< )o—>
£(010):
+ y
K(k-1]k-1)
F(k-1) | q' |
b

Fig. 3.2 Block diagram of the calculation of the optimal Kalman gains (a) and basic discrete-
time Kalman filter state estimator (b) for linear, time-variant MIMO process model.

The estimator equations are defined as:

(k| k—-1)=F(k-1)%(k -1k -1)+G(k —1u(k —1) (3-5)
P(k|k—1)=F(k-1)P(k -1k -1)F" (k-1)+ Q(k —1) (3-6)
ylk | k—1)=y(k)-Hk)x(k | k-1) (3-7)
K(k)=P(k |k —1)H" () [H()P(k |k — DB (k) + R(x)| (3-8)
Rk | k) =%k |k =1)+K(k)§(k | k1) (3-9)
P(k| k)=[1-K(k)H(k)] P(k|k—1) (3-10)

where f((k | k—l) (k|k-1) and (k | k) (k| k) are the a-priori and a-posteriori state

nxn nxn

estimate vectors and state estimation error covariance matrices, respectively, K(k) is the

matrix of optimal Kalman gains, and y(k | k— 1) is the measurement residual (i.e. inovation).
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In the prediction stage (Egs. (3-5) and (3-6)), the a-priori state vector estimate (prediction)
and a-priori state estimation error covariance matrix are being calculated. The predicted states
are obtained by relying on the known deterministic part of the process model and known or
estimated variances of the measurements and process model states (matrices Q and R). By
utilizing the observation model (i.e. process model output equation) and current
measurements y(k) the measurement residuals (3-7) are calculated. In the measurement update
stage, represented by Egs. (3-8) to (3-10), the optimal Kalman filter gain matrix K(k), a-
posteriori state vector estimate X(k|k), and state estimation error covariance matrix P(k|k)
updates are obtained. The Kalman filter feedback gains (matrix K) are calculated based on the
known or estimated state and measurement covariance matrices (Q and R), and they are
optimal with respect to minimizing the covariance of the a-posteriori state estimation error

X(k | k), according to the orthogonality principle [37]. The state estimate and estimation error

covariance matrix are then updated in accordance with calculated optimal Kalman gains.
The a-priori and a-posteriori state estimation error covariance matrices from Eqgs. (3-6) and
(3-10) are defined as:
Pk | k—1)2 E(X(k |k =1)X" (k |k —1)) (3-11)
P(k| k)= E(X(k | k)X" (k| k) (3-12)
where X(k |k—1) = x(k)—Xx(k | k—1) and X(k|k)=x(k)—x(k|k) are a-priori and a-posteriori

state estimation error vectors. The discrete-time form of Riccati equation (3-6) can be derived

by equating the (3-11) by using Egs. (3-1) and (3-5) (also see [37, 38]):

X(k |k -1)=F(k-1)X(k 1)+ w(k —1) (3-13)

Pk |k—1)= E<[F(k —DX(k=1)+w(k=D)]- [tk =D)X(k =1) + w(k — 1)]T>
(3-14)

= E([F(k~DX(k ~ 1)+ w(k D[R (k~DF" (k=D + w" (k1))

after some rearranging and by acknowledging that the w(k —1) and X(k —1) are independent

the former equation reads:

P(k| k—1)=F(k -1 E(X(k-DX" (k=1)F" (k=1)+ E(w(k -Dw' (k-1))
=F(k-)P(k—1|k—DF" (k-1)+Q(k —1)

(3-15)
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Similarly, the equation (3-10) for calculation of the a-posteriori state estimation error
covariance matrix P(k|k) can be derived from its definition (3-12) and the following

expression for a-posteriori state estimation error:
X(k | k) =1 =K (Y H(k) K (k | k1) =K (k)v(k) (3-16)

Pk | k=1)= E(X(k | k)X (k| &))
= E({[1-K () H(O Rk | =)~ K (k)v(o)}- {T- K HIO Rk | k=) - K(Rv(k)} ) (-17)
= £({1- KO HER®E | k~D Kb} & k| kD= HEOKG] ~v 0K (6)])

However, X(k |k—1) and v’ (k) are independent [2], so the above equation reduces to:

P(k|k-1)= E<[I —KHE) Rk | k=D (k| k-D)[I- H(k)K(k)]T>
+ E(K(k)v(k)v" (KK (k)) (3-18)
=[I-K®HE) [Pk | kDI -HEKK)] +KERGK (k)
After inserting the equation (3-8) into (3-18) and rearranging the final expression for the a-

posteriori state estimation error covariance matrix given in Eq. (3-10) is obtained.

In order to analyze the effect of the measurement covariance (R) and a-priori state prediction
errors (P(k|k—1)) upon the Kalman gains calculation and correction stage execution the
following two marginal (extreme) cases have been considered. More precisely, if the ideal,
noise-free measurements are assumed (measurement covariance R is a zero matrix), the

Kalman gains matrix from Eq. (3-8) reads:

K(k)= lim P(k|k~DH' (k) [H(P( | k- DA (k) + R =H" (k) (3-19)

and consequently, the a-posteriori state estimate vector from Eq. (3-9) can be rewritten in a

form:

X(k | k)=3(k |k =1)+ B (k)ly (k) - (k)& (k| £=1)] = B (k)y(k) (3-20)
According to the above equations the a-posteriori state estimate is a function of the
measurements and inverted measurement matrix (assuming matrix H is regular) and does not
rely on the process model. The a-posteriori state estimation error covariance matrix equals
Zero (P(k ] k)= 0, cf. equation (3-10)), while the a-priori estimation error covariance matrix
becomes equal to state covariance matrix (P(k | k—l): Q(k—1)). Generally speaking, if the

measurement covariances 7; are small in comparison to the state covariances ¢;, the Kalman

filter state estimates will predominantly rely upon the measurements model.
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On the other hand, if the state covariance matrix Q(k) tends to zero matrix (perturbations in all
states tend to zero) in conjunction with accurate deterministic model and nonzero
measurement covariance matrix R(k), the a-priori state estimation error covariance matrix

P(k|k—1) tends to zero matrix (cf. equation (3-6)) and, consequently, the Kalman gain

matrix becomes zero as well.
K(k)= P(k‘lgrg . P(k|k—1)H" (k) [H(k)P(k |k-1DH" (k) + R(k)]_1 =0 (3-21)
-1

In such a theoretical case, the state estimates would rely solely upon the process model, and
the correction (measurement update) phase would be unnecessary. In the real-world
applications the state estimates relay on both the process and measurement models. The
optimal Kalman gains and accurate state estimates rely on identification of realistic state and
measurement covariance matrices which are the measure of the reliability of the process
model and available measurements. More precisely, the ratio between the state and
measurement covariance Q*R"' will determine whether the weight would be given to the

model or to the measurements.

In most applications the measurement covariance matrix R is readily available, because it can
be derived directly from the measured signals. On the other hand, the elements of the state
perturbation covariance matrix Q are much more difficult to come by, since the states often
cannot be measured and therefore the state covariance needs to be guessed based on the
available measurements and physical properties. In consequence, the Kalman filter gains will
be suboptimal. The tuning of Kalman filter is performed by setting the appropriate values of
the state and measurement covariance matrices (commonly the R is kept constant and only Q
is varied). As mentioned above, it relies on the ability to formulate an accurate description of
the deterministic part of the process model, as well as the capability to account for all of the
stochastic disturbances (noise) within the observed process. In particular, by tuning the
Kalman filter with smaller covariance matrix Q values, the Kalman gains are decreased, and
more weight is given to the state-estimate based on the deterministic part of the model, and
reduces the impact of the measurement corrections upon the a-posteriori state estimate. At the
same time, the filter ability to track fast changes in the states becomes less effective. On the
other hand, by increasing the values of variances within Q matrix, the emphasis is shifted
towards the measurements through increase of Kalman gain values that results with higher
noise in the state estimates. The Q and R matrices are often time-variant because the levels of

the reliability of the process model and measurements vary with the operating regimes ore
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some external disturbances, and consequently they must be appropriately updated (see

Subsection 3.3).
Apart from the state and measurement covariance matrices Q and R, the initial values of the
states and a-priori state estimation error covariance matrix X(0|0) and P(0|0), respectively,

have large impact on the Kalman filter performance during initial transient (after the estimator

is re-started). The initial transient tracking errors can be reduced if x(0|0) and P(0|0) are

set as close as possible to their true values. Generally, if the higher initial values of the state
estimation error covariance matrix are used in the presence of the initial state estimation
errors, the resulting higher Kalman gains ensure faster convergence of the state estimates to

their true values, at the expense of the increased noise.

3.2 Extended Kalman filter
Extended Kalman filter (EKF) is a generalization of the basic Kalman filter algorithm for the

application to state variable and parameter estimation of nonlinear, time variant, discrete-time

processes described by the following nonlinear dynamic process model:
x(k)=f (x(k —D,u(k—1),w(k-1)) (3-22)
y(k) = h (x(k), v(k)) (3-23)
where f and h are continuously differentiable matrix functions.

The nonlinear model approximation used for EKF design is based on the linearization of the

model described by Eqs. (3-22) and (3-23) [2,38] around the operating point defined by the a-

posteriori state estimates from the previous time step:
x(k)=x,(k)+F(k-DX(k—-1]k-1)+Q(k-Dw(k—1) (3-24)
y(k)=h(x, (5))+ H(k) (x(k) = x, (k) + ¥ (k) (k) (3-25)

where x,(k)=f (f((k —1|k-1),u(k - 1)) represents the operating point.

The equations of extended Kalman filter read:

Rk | k=1)=f(x(k =11k =1),u(k -1)) (3-26)
ylk |k —1)=y(k)-h((k | k-1)) (3-27)
P(k|k—1)=F (k-1)P(k -1k =DF (k-1)+ Q(k -1)Q(k - 1)Q" (k-1 (3-28)
K(k)=P(k | k- DH" (k) [H (k)P(k | k —)H" (k) + $(k)R(k)®" (k)| (3-29)
(k| k)=%(k | k—1)+K(k)y(k|k-1) (3-30)
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P(k | k)=P(k|k—1)-K(k)H(k)P(k | k1) (3-31)

where matrices F(k), H(k), Q(k), W (k) are Jacobian matrices obtained as follows:

of
Fk-1)= x| X=X(k—1k-D) (3-32)
u(k-1)
w=0
of
QUk-D=—| o (3-33)
ow fl(k)i(l) -
w=0
ch
H) =21 x=x, ®) (-39
v:7
ch
YO=C b (3-28)
v=0

Note that the EKF equations (3-26)-(3-31) are similar to the equations of a basic Kalman filter
with the exception that the a-priori state estimate and measurement residual are being
calculated from nonlinear state model and measurement equations. Kalman gain matrix K(%),
state estimation error covariance matrices P(klk-1) and P(k|k), and a-posteriori state estimate

X(k | k) are basically derived from the equations for the common KF, besides that the F(k),

H(k), Q(k), ¥ (k) are Jacobian matrices obtained by linearization of the nonlinear process state

and measurement equations (3-22) and (3-23).

EKF filter, unlike the basic KF, is suboptimal because the nonlinear transformation of the
state and measurement variables, needed for the purpose of linearization of the process model,
results in non-Gaussian probability distribution of the state and measurement noise [2, 3, 37,
38]. Moreover, the EKF algorithm tries to accomplish the aforementioned optimality at the
expense of stability (estimator convergence). Namely, in the presence of the modeling errors

and low excitation the estimated state variables can quickly diverge from their true values

[41].

3.3 Adaptive Kalman filter

In the case of time-variant covariance models of the state and measurement noise vectors
and/or change in the reliability levels of the state-space and measurement models related to
external disturbances, unmodeled dynamics, parameter variations or structure change within
the model, sensor bias, fault etc., the Kalman filter with fixed state and measurement matrices

cannot provide accurate estimates. In such conditions the Adaptive Kalman Filter (AKF)
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should be used, because it enables timely adaptation of the covariance matrices resulting in
the appropriate tuning of the KF in order to compensate for the above disturbance effects or

changes in the underlying models.

Consequently, various concepts of adaptive estimators utilizing Kalman filter methodology,
such as Multiple Model-based estimator (MMAE), Innovation-based estimator (IAE),
Residual-based estimator (RAE) etc., are proposed and evaluated in literature [37, 39, 40].
The MMAE runs multiple Kalman filters in parallel, each of them designed for specific,
known disturbance or model error, so it requires the a-priori knowledge on disturbances,
faults or possible model variations. The IAE and RAE estimate and adapt the state and
measurement covariance matrices over the moving window based on the innovation or
residual time sequence. Such approaches to adaptive Kalman filtering can be demanding with
respect to computational burden (CPU power) and required memory resources, while, on the
other hand, they are effective only if the measurement distribution and covariance model are
consistent throughout the moving window. The adaptive fading Kalman filter (AFKF)
represents a computationally more efficient algorithm derived from the IAE approach. AFKF
adaptation mechanism is based on the scaling of the nominal covariance matrices R and Q by
appropriate single or multiple scaling factors (i.e. Single Fading Factor method - SFF or

Multiple Fading Factor method - MFF) [42, 43, 45].

Hereinafter, the SFF and MFF adaptive fading Kalman filter will be described in more detail
with scaling of both the measurement and the state covariance matrices in order to be able to

account for the errors/changes in measurements as well as in the process model.

3.3.1 Single fading factor AFKF

First step in SFF AFKF design is to calculate the measurement covariance scaling factor from
the measurement innovation sequence, in order to account for the changes in the measurement
model. The covariance of the measurement residuals (also known as innovation covariance)

can be defined as:

C, (k)2 E((k | k=1)-§" (k| k=1))= H(k)P(k | k— ) HT (k) + R(k) (3-29)
This expression represents the theoretical value of the measurement residual covariance which
is valid if the state and measurement covariance models are accurate. On the other hand, the

true residual covariance matrix can be estimated as:

A

k
C, (k =— Zi (k|k=1)-§F" (k| k-1) (3-30)
M —M +1
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where the M is the length of the time frame on which the innovation covariance estimate is
calculated. The scaling factor is typically derived from the discrepancies between the

theoretical and estimated values of the measurement innovation covariance (i.e. the difference
between C, (k) and C, (k)).

The main distinction between various AFKF implementations is related to the particular
approach of calculating the scaling coefficients. In this particular case, the first adaptation
coefficient «,, =f ((Ajr(k)C;l (k)) is derived from the ratio of the estimated and theoretical

innovation covariance matrices according to the following expression:

o (k)= max{l, Lole e (k))} (3-31)
m

where m is the size of the measurement vector y. The second adaptation coefficient A4 is
defined by considering the case of the incomplete information on the dynamic model
equations. Generally, the estimation errors in such a case can be reduced by increasing the a-

priori state estimation error covariance matrix. Thus the scalar adaptation factor 4, >1 is
introduced to account for the increased P(k|k—1) matrix, while o, is still determined by
the related increase of the innovation covariance matrix. The 4, can be obtained by equating
the following equation:

t,y (K)C, (k) = 2, (YH(K)P(k | k1) H (k) + R(k) (3-32)
After inserting Eq. (3-29) into Eq. (3-32) and rearranging the final expression for calculation

of the adaptation coefficient read:

tr{c, (YH(O) P | k=D H (k) + (o, () ~ 1R (K))

MO or(H(k)P(k| k—D)H (k))

(3-33)

Finally, the Kalman filter equations (3-6) and (3-8) are modified (i.e. made adaptive) by

utilizing these two adaptive coefficients:
P, (k|k—1)= 2, ()F(k-1)P(k -1k —1)F (k—1)+Q(k 1)) (3-34)

(k)= 2ar®) __ P(k|k=DH" (k)
“7 (k) H(k)P(k | k—1H" (k)+R(k)

(3-35)

Note that in case of measurement model-related errors the innovation covariance matrix is

also increased («,, >1), in particular due to the increase of the measurement covariance

matrix R, while the a-priori state estimation matrix P(k | k— 1) remains unchanged (which can
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be facilitated by setting 4, =1). The related estimation errors are thus reduced, according to

Eq. (3-35) through the decrease of Kalman gains by means of a scaling factor 1/« .

3.3.2 Multiple fading factor AFKF
The adaptive fading Kalman filter with multiple fading factors is derived by applying the

same logic as in the case of AFKF with single fading factor described above. For the case of
errors in the observation (measurement model), the scale matrix I'nxm 1S calculated from the
prediction error (deviation) between the theoretical and estimated innovation covariance
matrices. Since the error in the innovation covariance is assumed to originate from the
mismatch in measurement covariance matrix, the appropriate scaling matrix I' needed to

compensate for those deviations is obtained as:
C.(k)=H(k)P(k | k—1)H" (k)+ T (k)R (k) (3-36)

(k)= [Cr(k)—H(k)P(k | k—l)HT(k)] R (k) (3-37)
However due to the numerical errors (computer floating point arithmetic round-off errors,
approximation errors in the process and observation models due to EKF linearization, Taylor-
series expansion-based approximation of the discrete-time model), the scaling matrix may
neither be diagonal nor positive definite. Therefore the scaling matrix is derived by

introducing the appropriate constraints to ensure the positive definiteness:

L' (k) = diag(p;, ¢, -+ ,) (3-38)
where @, (k) = max{l, @,(k)} i=1-,m.
On the other hand, in the case of errors in the state-space model, the related adaptation i.e.
fading matrix A(k) is defined as:

C, (k)= H(k \F (k—1)P(k - 1|k —1)F" (k—1)+ A(6)Q(k )7 (k)+ R(k) (3-39)

H (k)[ér(k) “Hk)F(k-D)Pk-1|k-1)F" (k-D)H" (k) —R(k)]
Q(k)H' (k)

Similarly, as in the case of scaling matrix I'(k), the final fading matrix is derived as:

A(k) = (3-40)

£

A" (k) =diag(x;, K, -+ K,) (3-41)

n

where & (k)= max{l, K, (k)} i=1-.n.
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The scaling matrix I and fading matrix A" are applied in Kalman filter a-priori state error
covariance and Kalman filter gain equations (3-6) and (3-8) in order to attenuate the effect of

fixed-valued state-perturbation and measurement noise covariance matrices:
P, (k|k=1)=F(k—=1)P(k -1k -1)F" (k-1)+ A" (k)Q(k—1) (3-42)

) P(k | k—1)H (k)
K, (k)= H(k)P(k | k- 1)H (k)+ T (b)R(k)

(3-43)

In this way the adaptive fading Kalman filter with multiple fading factors is implemented, that

1s robust against the disturbances or changes in the state and measurement equations.
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4 Yaw rate estimation

4.1 Background

The vehicle body yaw rate is essential information needed for vehicle dynamics control
(VDC) systems implementation. The yaw rate signal is traditionally obtained by using a
gyroscope placed in the vehicle CoG (i.e. by using a yaw rate gyro). Alternatively, the yaw
rate can be estimated by using other existing vehicle dynamics sensors. For instance, in [4] the
non-driven wheels rotational speed measurements from ABS sensors are utilized for yaw rate
estimation. Furthermore, a single lateral accelerometer placed in CoG [6] or a pair of
accelerometers placed outside of CoG [8,9] may also be used. The yaw rate estimation
method proposed in [6] may not be accurate for all dynamic conditions due to possible
disturbances in road surface and road bank. The approach based on two longitudinal
accelerometers [9] does not provide direct steady-state information of yaw rate, and may be
sensitive to vehicle dynamics modeling errors and accelerometer offset. The estimator based
on a pair of lateral accelerometers [8] provides direct steady-state measurement of the yaw
rate, but it may also be sensitive to modeling errors. In addition to longitudinal and lateral
accelerometer configurations [8,9], one may also consider combined/diagonal configuration
[30]. In general, the main disadvantage of the accelerometer approach is the sensor offset-
related drift-like estimation error and a high sensitivity to sensor misalignment errors (see

Section 4.3 and [30]).

The yaw rate estimates obtained by utilizing any of the aforementioned estimator
configurations, can be used as redundant information for the gyroscope sensor fault detection
[6,46] or it can be applied for implementation of accurate estimators (as a low-cost
replacement for gyroscope) based on the sensor fusion methodology [6,30,46]. In general, the
sensor fusion concept can be used to estimate different vehicle dynamics variables such as

gyroscope offset [4,46], sideslip angle [6], and heading angle [47].

The sensor fusion concept for yaw rate estimation, combining two diagonally placed
accelerometers and the non-driven wheel speed sensors has been proposed by the author in
[47]. This chapter describes the development and verification results of such a combined
adaptive estimator. In order to gain more profound insight on the overall accuracy of this
adaptive, Extended Kalman Filter (EKF)-based, kinematic yaw rate estimator a detailed

analysis of estimation errors for each of the two utilized concepts has been carried out [30,49].
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The non-driven wheel speed sensor-based yaw rate estimation is essentially very simple.
However, there are numerous effects, such as braking forces, effective tire radius variations,
measurement delay due to tire dynamics, and road bump disturbances, which affect the
estimation accuracy (see Section 4.2). A detailed algebraic and simulation analysis of
estimation errors has been carried out and appropriate open-loop compensation routines have
been proposed [48]. The remaining, uncompensated errors are significantly reduced by proper

tuning of sensor fusion estimation algorithm [30] that combines the two aforementioned

kinematic estimation approaches.

4.2 Estimation based on wheel speed measurements
For the front wheel drive vehicles the yaw rate can be estimated from the measured non-
driven rear wheel rotational speeds @, and @, [6,30,46,47]. From the kinematic relationships
shown in Fig. 4.1, the rear wheels velocities u,; and u,, are related to the vehicle longitudinal

speed u, the yaw rate w., and the vehicle track ¢ according to the expression (4-1).

Fig. 4.1 Concept of yaw rate estimation based on non-driven wheel speed measurements.

t t
u,=u+w.—, U, =Uu—@o,— 4-1
rl 22 rr 22 ( )

The longitudinal vehicle speed and the yaw rate can, thus, be calculated as:
rlrl rrlrr

2 2 (4-2)

u,+u, @;r,+o.r
u =
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u., —u w.r. —a,r
®. = rr t rl — rr rrt rl"rl (4_3)

where r,; and r,, are the unknown effective tire radii (see Fig. 4.2). The effective tire radius 7,
shown in Fig. 4.2a is defined as a distance of the imaginary slip point S (normally located
slightly below the road surface) from the wheel centre [49]. The rolling velocity of the wheel
is then defined as a product of the angular velocity of the wheel and its effective radius

V. =r,w,. The longitudinal slip velocity Vi, at the slip point is defined as difference between

the wheel centre forward velocity V, and the rolling velocity V,:

KX = Vx - Vv)‘ = V)C - rea)w (4-4)
In the case of free rolling tire (i.e. zero longitudinal slip velocity) the effective rolling radius is
defined as r, =V, /w, . Furthermore, the effective tire radius r, decreases with increase of the

tire normal load F, as illustrated in Fig. 4.2b. The effective radii vs. tire normal load

characteristic can be modeled by the following third order polynomial in the square root of F.

[7]:
r, =g F + o F2 + @ JF, + 4, + 4,0’ (4-5)

where the coefficients qq,...,q3 and ¢, are the tire parameters. The coefficient gy corresponds
to the unloaded tire rolling radius ry that changes with the tire pressure p and the tire tread
wear, while the last right-hand side term in Eq. (4-5) relates to the centrifugal effect of the

wheel rotational speed on the effective radius.

0.97 ~—

~

\

———

N ___ O S —— 0 2000 4000 6000 8000
S, o0

Fig. 4.2 Effective tire rolling radius r.: definition (a) and characteristic of tire effective
radius versus normal load F. (b).

The effective tire radii are difficult to measure (and they change during driving maneuvers).
Therefore, the constant nominal effective tire radius 7, can be used for both wheels instead, as

an approximation for estimation of the longitudinal velocity and the yaw rate:
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i =%<w,, +a,) (4-6)

A

o, = FTn(a)rr - a)rl) (4_7)

z

The yaw rate estimation error derived from Egs. (4-3) and (4-7) reads:

QN)Z = a,\)z - a)z - %[a)r” (rn - rrr) - a)rl (rn - rrl )] (4_8)

This error is introduced by the difference between the actual effective tire radii »,, and r,; and
the nominal tire radius 7, used in the estimation equation. The effective tire radii change with
the tire pressure and wear, roll and pitch dynamics, loaded vehicle mass, road bank and road
bumps. Also, during braking maneuvers the measured wheel rotational speeds w,, and w,; will

differ from the nominal rolling values due to the longitudinal slip.

In the yaw rate estimation problem the tire should be considered as a nonlinear velocity sensor
(e.g. the velocity u,, in Eq. (4-3) is reconstructed by measuring the tire speed @,.). The tire
longitudinal dynamics introduces a variable delay of such velocity measurement, which can
result in a transient yaw rate estimation error. The tire response is analyzed below based on a

linearized wheel dynamics model.

Under the presumption that the tire operates within the adhesion region of the tire static curve

characteristic (see Section 2.3), the longitudinal linearized tire model is given by [50]:

7 =rF =R, (4-9)
where R, is the tire damping coefficient, F is the tire longitudinal force, and w, is the wheel
rotational speed. Symbol ‘~’ denotes small signal variations around an operating point of the
linearized tire model characteristic (w0, 7). The tire damping coefficient used in Eq. (4-9) is

given by:

2
R=t A dn v (4-10)
do dn do, " u

where # = (r.®, - uy)/u, is the longitudinal slip (see Eq. (2-8)), u,, is the wheel center

velocity, and the tire static curve stiffness £, is defined as (see Fig. 4.3):
i - dF, u, dF,

Y odn 1 do,

(4-11)

The change of vehicle/wheel velocity u,, induces a longitudinal microslip # of the rolling tire.

The tire responses by generating a small longitudinal force F, which forces the tire rotational
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speed @, to follow the velocity u,, /r.. The dynamics of this process is described by following
equations [30]:

Io,+%7 =1 &,+R&, =7, =0 = T & +d, =0 (4-11)
1 I u
T — w — w w 4_12
"SRk (4-12)

where [, is the wheel inertia.

The time constant 7,, characterizes a delay in the wheel speed “sensing”, which causes a
transient error in the yaw rate estimate. The time constant 7,, varies with the changes of the
wheel/vehicle speed (u,, = 1) and the tire static curve stiffness k.. On the other hand, the wheel
inertia /,, is constant and variations of the tire effective radius », are small. Note that the time
constant 7,, can be different for the left and right wheel due to different tire static curve
stiffness (k.7 # k) and different wheel speeds (u,, 1 # ty, -, EQ. (4-1)) during cornering. This
difference in tire dynamics time constants and related wheel speed measurement delays

introduces further errors in yaw rate estimation during transient conditions.

10
5000 ——— A —
a%\ F;, = 4kNJ| e k=197 +3.10%a% -1.2-10*a +1.2-10°
2° i
4000 iz "l ® Data |
[ DY = S .- — Interpolation
I 82 7 10 + 4
= 3000: 1d| ot = k4| Z
i | | 4000 =
R I | L v 8
2000 | 3000 p/zaal |
I 2000{ —4f” Operating 71
q::> V4 point
1000 | oo b # 1 _an | 61
I Y odp
| 0 ] 3 *
0 0.05 0.1 0.15
0bh ——_L _,/ I T T 4 L I L L L I L i L
0 01 02 03 04 05 06 0 2 4 6 8 10
n a[deg]
Fig. 4.3 Longitudinal tire static Fig. 4.4 Longitudinal stiffness k;
characteristic for various tire slip angles c. vs. tire slip angle «.

The longitudinal tire static curve given in Fig. 4.3 indicates that the longitudinal stiffness £,
decreases with the increase of the tire slip angle a. As illustrated in Fig. 4.4, the stiffness £,
vs. the slip angle « curve can be approximated by a 3th-order polynomial. Furthermore, for a
constant slip angle « the stiffness k. increases approximately linearly with the tire normal load

F: (see Fig. 4.5 for illustration) k (F.) |a:20 =22F +9.5-10°.
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Fig. 4.5 Tire longitudinal force static
characteristic vs. tire normal load F..

Table 4.1 summarizes the influences of tire parameters (including the tire-road friction
coefficient 1) on the speed “sensing” delay and the transient error of yaw rate estimation. For
the nominal tire parameters (/,, = 1 kgmz, F.=4kN, and r, = 0.337 m), k, values in the range
of 50-120 kN (see Fig. 4.4), and vehicle velocity of 20 m/s, the time constant 7, has values in
the range of 1.5 - 3.5 ms. The delay and the estimation error become larger for higher vehicle
velocities, smaller tire loads, larger tire slip angles, and lower tire-road friction coefficients

(see Subsection 4.2.1 d) and simulation results given in Fig. 4.13).

4.2.1 Estimation error analysis
An analysis of the various sources of the yaw rate estimation errors is conducted. The

obtained results are illustrated by computer simulations utilizing a 10 degrees-of-freedom

vehicle dynamics model [23].
a) Braking related errors

The kinematic yaw rate estimate (4-7) is valid for the case of free rolling non-driving (rear)
wheels. However, the rear wheels are normally braked (in addition to the front wheels), which

can introduce significant estimation errors due to the presence of a large longitudinal slip #:

n:”ea)w—_”w (4-13)
u

This is because the longitudinal slip-related wheel speed offset (i.e. r.w, # u,) may be
comparable to the small wheel speed difference(w, —®, )appearing in the estimation
equation (4-7). By inserting the wheel speeds u,,,; and u,,, from Eq. (4-1) in Eq. (4-13) the

longitudinal slips for the rear left and rear right wheels read:
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. _ L0, —u+ o, 1)2 o, —u—o_t/2
" u—m,t/2 u+m, t/2

(4-14)

o

In order to focus the analysis on an impact of the longitudinal slip # on the estimation error,
the rear tires effective radii are assumed to be constant and equal to the nominal tire radius 7.

The estimation error is then given by:

. @, — @
b, -0, =1,—"—" -0, (4-15)

t

1>

@

z

Combining Eqgs. (4-14) and (4-15), and rearanging yields

~ _u o,
a)z :7(7717 _nr1)+7(77r1'+77r1) (4-16)
For the normal driving conditions, where n=F,/k_=z,/r,/k, (Fig. 4.6; 5, = braking torque

per wheel), Eq. (4-16) is transformed to

cT)z:T—b wp L1 M L+ ! (4-17)
rn t kx,rr kx,rl 2 kx,rr kx,rl

where k, ,; and £, ,, are the left and right longitudinal tire stiffnesses.

According to Eq. (4-17) and the simulation results for the braking in a turn maneuver, given
in Figs. 4.6 and 4.7, the braking related yaw rate estimation errors increase with the braking
torque 7. For the fixed, relatively small yaw rate amplitude of 0.11 rad/s the peak estimation

error rises almost linearly up to 150% for the braking torques reaching S00Nm per wheel ().

Furthermore, the estimation error depends on the tire stiffness coefficients £, ,; and &, which

change approximately linearly with the tire normal load F- (see Fig. 4.5):

k..=alF,¥oF)+b, k., =al(F,*dF)+b (4-18)

where OF. denotes the cornering-related lateral tire load transfer. According to Eq. (4-17), the
estimation error increases with the tire load decrease (e.g. due to the braking-related
longitudinal load transfer which results in reduced rear wheels stiffnesses &, ;, see Fig. 4.5)
and is amplified by both vehicle velocity u and the yaw rate @.. Simulation results in Fig. 4.8a
confirm that the higher the yaw rate, the higher the estimation error. However, the relative
estimation error &, shows small variations with the yaw rate amplitude ., especially at

higher yaw rate values (see Fig. 4.8b).
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Fig. 4.8 Quasi-steady-state yaw rate estimation errors vs. applied braking torque
for step-steer maneuver: absolute error (a), relative error (b)

b) Errors caused by effective radius variations

Another major source of the yaw rate estimation error is related to difference between the tire
effective radii 7,,,, and the nominal radius r», (see Eq. (4-8)). It is, therefore, of interest to
analyze in detail how the tire effective radii change in various maneuvers and what kind of
impact this change has on the estimation accuracy. In this regard, the effective tire radii can

be defined by the following expressions:

r,=r,—A +90,

v, =1r,—A =0,

rr

(4-19)

where A, is a common component and ¢, is a differential component of the effective tire radii
variation. These components are illustrated in Fig. 4.9 for a step-steer maneuver and they are
given by:
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A 2y -2 T —p —p (4—20)

where 7, 1s the effective tire radii mean. The common variation component A, corresponds to

variation of tire radii mean (same for both wheels), while the differential component &, is
equal but of opposite sign for the inner and outer wheels. Simulation results in Fig. 4.9 indeed
illustrate that a pure cornering maneuver dominantly induces the differential component o,
due to the lateral tire load transfer, while a slight change of the common component A, is
caused by a certain vehicle deceleration during cornering. It should be noted that the nominal
tire radius 7, in Fig. 4.9 is chosen to be lower than the actual tire effective radius mean value,
in order to introduce a persistent (positive) common radii variation component A, for the sake

of illustration.
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Fig. 4.9 Step-steer maneuver (@w.=0.23 rad/s, u=20 m/s): effective rolling radii of the rear
wheels (a), absolute and relative estimation errors (b).

Substituting Eq.(4-19) in Eq. (4-8) yields the following absolute estimation error equation in

terms of the common and differential components of effective tire radii variations:

~ A w. . —ao . +o
a)z a)z _ a)z — Ar rr rl + 5, rr rl
L L

1>

(4-21)

Since (@, + @) >> (@, — @), it 1s clear from Eq. (4-21) that the differential radii variation o,

has much larger impact on the estimation error then the common variation A,. This is
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confirmed by the algebraic sensitivity analysis of the relative estimation error Eq. (4-22) (9,
sensitivity is much larger than A, sensitivity, see Eqs. (4-23) and (4-24)), as well as by the

simulation results in Fig. 4.9 (the error is large when ¢, is large, ¢ > 15s).

€ = GN)Z = Ar(a)rr _a)rl)_é‘r(a)” +a)rl) = fn (Ar,é‘r) (4-22)
@ (rn _Ar)(a)rr _a)rl)+§r(a)rr +a)rl) fd (Arﬂé‘r)

z

The sensitivities of the above relative estimation error function with respect to A, and ¢, read:

ang _ rn (a)rr - a)rl)z
OA, 1

A

(4-23)

o¢ — T (a)rl — @, )(a)rl + a)rr)

wz

0o, f7

r

(4-24)

For the purpose of a more detailed analysis, the relative error equation (4-22) is split into A,

and J-related terms:

A A

e _(A)= ~—- 4-25
LB =2 (4-25)
-0 (o, +
ng (5,,) — r (a)rl a)rl ) (4_26)
rn (a)rr - a)rl) + 5r (a)rr + a)rl)
By introducing the characteristic wheel speed coefficient:
f, 2l =G (4-27)
a)rr + a)rl
Eq. (4-26) is rewritten as:
-0
e (0)=—"T— 4-28
(0) rk,+0. ( )

The coefficient k, increases with increase of the yaw rate w, = r,(w,» — @)/t and decrease of
the vehicle speed u = r,(w,» + ®,;)/2. The common radii variation-induced estimation error
E.2(Ay) 1s small and it is approximately equivalent to the relative radii change (i.e. 5% radii
change results in approximately 5% estimation error, see Fig. 4.10a). On the other hand, the
differential radii variation of 3% can result in an estimation error &,.(0,) from approximately
20% to 90% depending on the vehicle velocity-related coefficient 4, (the lower the coefficient
ko, 1.e. the larger the vehicle velocity and the lower the yaw rate, the larger the error,

Fig. 4.10b).
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Fig. 4.10 Yaw rate relative estimation errors as function of normalized effective radii
variations: common (a) and differential (b).

In order to further clarify the impact of the yaw rate w. and the vehicle speed u on the yaw
rate estimation error, the following analysis is carried out. Based on Eq. (4-1) the wheels

rotational speeds can be expressed as

2u—to, 2utto,
a)rl =T 4 > a)rr =T 4
2r, 2r

r

(4-29)

By inserting the tire effective radii equations (4-19) and the wheel speed equations (4-29) into
Eq. (4-8) yields the following estimation error equation:
- A(r,-A)+5] 27,0, u
0. = @

- ‘@, — 2 4-30
T, A -8 (- -5 (#30

The second right-hand side term in Eq. (4-30) is a dominant source of the estimation error,
because the vehicle velocity u/f has much larger magnitudes than the yaw rate (i.e. w. = 0 -

0.4 rad/s, while u ~ 0 - 40 m/s).

The simulation results in Fig. 4.11a confirm that the relative estimation error significantly
increases with the vehicle velocity (up to 45% for u = 30m/s), while the relative error is

almost constant (g,, ~ 20%) for a wide range of yaw rates (Fig. 4.11b).
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Fig. 4.11 Yaw rate estimation relative error for step-steer maneuver with respect to
vehicle speed (a) and yaw rate amplitude (b).

¢) The road bank-related estimation errors

The road bank also affects the tire effective radii and consequently the yaw rate estimation
accuracy trough a change of the tire nominal load £y = m,-g/2 (m, is the vehicle mass over the

rear axle). On a road with the bank angle @z the tire normal loads F_; and F>, are given by (see

Fig. 4.12a):

m m oh .
F(¢,) = ég cosg, — = sing, (4-31)
F.(4,) = még cosg, + ’"“tgh sing, (4-32)

Refereing to Eq. (4-19), the cosine terms in Egs. (4-31) and (4-32) would cause the common
effective tire radii variation A,, while the sine terms would induce the differential radii
variation ¢,. Therefore, according to discussion from previous subsection, the sine terms singj

~ ¢ are dominant sources of the road bank-related estimation error.

According to the simulation results in Fig. 4.12b the road bank induces an additional
estimation error of up to 12% for ¢ = 10° and u = 10 m/s. The initial relative estimation error
of 5% obtained for the zero road bank angle ¢ is predominantly caused by the vehicle
velocity (in this case u = 10 m/s, cf. Fig. 4.11a). Thus, variation of the vehicle velocity u will

shift up the relative yaw rate error vs. road bank angle characteristic in Fig. 4.12b.
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Fig. 4.12 Road bank-related yaw rate estimation errors: illustration of road bank impact on
tire normal loads (a), and relative estimation error for step-steer maneuver (b).

The sources of effective tire radii variations are summarized in Table 4.2. The effective tire
radii variations and the corresponding yaw rate estimation errors can be classified as static
and dynamic. The static errors are mostly caused by tire deflation (e.g. single tire deflation
results in differential tire radii variation ¢,) or tire tread wear (both tires are evenly worn
causing the common radii variation A,). On the other hand, dynamic errors are related to the
vehicle roll motion and road bank or to the vehicle pitch motion and road grade. The roll/bank
dynamics are more critical since they cause differential tire radii variation &, as oppose to

pitch/grade dynamics that cause common tire radii variation A,.

Table 4.2 Summary of effective radii variation sources
(vellow shaded rows designate dominant sources of estimation errors)

Error source A, O Error type
Tire pressure (p) + + Static
Tire tread wear (uniform for left/right) + - Static
Braking/accelerating (pitch angle - 6) + - Dynamic
Cornering (roll angle -¢) - + Dynamic
Road bank (bank angle -¢;) + + Dynamic
Road grade (grade angle) + - Dynamic
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d) Transient estimation errors

Transient yaw rate estimation errors are predominantly caused by two effects: (i) the effect of
tire longitudinal dynamics on variable delay of tire velocity measurement and (ii) road bump

disturbances [48].

The former type of transient estimation errors, caused by tire dynamics (see Subsection 4.2,
Eq. (4-11), and Table 4.1), are characterized by the wheel/tire time constant 7, given by
Eq. (4-12). According to Table 4.1, the time constant 7,, and the corresponding transient

estimation errors increase with the vehicle speed u and the tire slip angle o

Fig. 4.13 shows the relevant vehicle dynamics state variables and estimation errors for the
double lane change maneuver on a low-u surface, with an emphasized oversteer behavior. In
such a maneuver, large yaw accelerations @, and tire slip angles « are present, as a worst-
case scenario with respect to estimation errors due to the tire dynamics. For the sake of clear

illustration of tire dynamics influence, the tire radii are set to their nominal value in the

simulations.
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Fig. 4.13 Vehicle dynamics state variables (a) and yaw rate estimation errors (b) for double
lane change maneuver (u = 0.4).

Intervals with relatively large transient estimation errors coincide with the presence of high
yaw accelerations, large tire slip angles, and higher vehicle velocity (Fig. 4.13b). This is in
accordance with the analysis summarized in Table 4.1 and the fact that the tire delay effect on
the estimation error is more emphasized at larger yaw accelerations (faster dynamics). The
peak estimation error of 0.03 rad/s is observed during the initial period of oversteer (Fig. 4.14,

t ~ 1.85 s) on the yaw rate scale of approximately 0.3 rad/s, i.e. the peak error is
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approximately 10%. Mostly, the relative estimation error resides well within 10% except for

the high gradients and yaw rates around zero (a singularity in &, equation).

The second source of the transient estimation errors is road-induced disturbance when the
wheel suddenly comes across the bump on the road and the pulse-like disturbance in the
measured wheel speed occurs. Since the yaw rate estimate is based on the small difference
between the wheel speeds (cf. Eq. (4-7)), this disturbance can cause a significant pulse-like
estimation error. The effect of road bump-related error is illustrated in Fig. 4.14 for the case of
a step-steer maneuver with the steady-state yaw rate of 0.23 rad/s and the road bump
disturbance pulse initiated at # = 3s. More precisely, the road bump disturbance has been
simulated by adding the sine-wave-shaped pulse with amplitude of wypm, = 1 rad/s and
frequency of 2.5 Hz to the left rear wheel speed signal. In the considered maneuver, the
magnitude of thereby induced pulse-like yaw rate estimation error amounts up to 80% of the
actual yaw rate. Therefore, the road-bump disturbance conditions must be monitored (the road
bump disturbance detection method implemented in the combined adaptive EKF estimator is
described in Section 4.4) and in its presence the yaw rate should be estimated by using some
alternative estimation method (e.g. dual-accelerometer based estimator, see Section 4.3),
because this potentially large estimation error cannot be otherwise suppressed or compensated

for.

0.4 ‘ ‘ ‘
— Reference

0.35¢ Estimate |t

0.3 bl
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Fig. 4.14 Illustration of road bump-related wheel speed sensor-based
yaw rate estimation error.
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4.2.2 Improvement of estimation accuracy by open-loop compensations

The dominant tire radii variation-related static and dynamic yaw rate estimation errors (see
Table 4.2) can be significantly reduced by applying relatively simple open-loop compensation
algorithms. On the other hand, robust compensations of estimation errors caused by braking,
tire dynamics, and road bump disturbance do not appear to be feasible. Thus, the sensor
fusion approach, described in Section 4.4, should be utilized in order to avoid or mitigate

impacts of these effects.

a) Compensation of estimation errors related to static tire radii variations

Compensation of the static estimation errors (primarily caused by a single tire deflation) is
based on the difference between the measured rear wheel speeds during straight driving. For
the case of straight driving and different tire radii »,;; and 7, the tire rotational speeds w,;

and o, differ from each other and satisfy the expression:

U=r, @, =T, 0, where @, # @, (4-33)

From the averaged wheel speeds (or eventually wheel positions) during straight driving the

effective tire radii ratio can be identified:

k=l @ (4-34)
K a)rl.s

rr.s

This ratio is then used for compensation of the static yaw rate estimation error according to

either of the following expressions:

o =" (0, ~k o) o o =" 1w _0 (4-35)
zc,l ¢ i c,s 0l rr rl

The coefficient k., modifies the initial estimation equation (4-7), so that the estimated yaw
rate for the straight driving equals zero. This provides compensation of the static differential
radius error o,. The error due to the common radii variation (A,) remains uncompensated, but

this error is negligible, anyway (see Section 4.2).

Figure 4.15a illustrates the effectiveness of the static error compensation. The small
remaining error (for small w;) is due to the uncompensated roll-related tire radii differential
variation. Fig. 4.15b shows that the compensation is highly sensitive to inaccuracies of the
compensation ratio k.;. However, this should not be critical, because k., could be estimated
very accurately by averaging speed signals in Eq. (4-34) over a relatively long periods of

straight driving.
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Fig. 4.15 Compensation of static tire radius variations errors for step-steer maneuver
(u =20 m/s): yaw rate estimates w/ and w/o compensation (a) and compensation sensitivity
with respect to accuracy of coefficient k. (b).

b) Compensation of estimation errors related to dynamic tire radii variations

Dynamic effective tire radii variations and related yaw rate estimation error are mostly caused
by the vehicle roll motion and road bank, and corresponding lateral load transfer (see
Table 4.2). In order to be able to compensate for this dynamic error, the following tire load
transfer function oF.(s)/a,(s) has been derived from a simplified vehicle roll motion model
extracted from the full vehicle model [23]:

SF,(s) _mt  bstk,

4-36
ay(s) 2 I.s"+bs+k (436)

where /.. is the roll moment of inertia with respect to roll center, JF: is the tire normal load
transfer, m, is the vehicle mass over the rear axle, 4; is the height of the vehicle CoG over its
roll axis, b, is the suspension damping rate for the rear wheels, and &, is the suspension spring

rate of the rear wheels, while b, = 5¢*/2 and k, =k,¢* /2. The well-damped transfer function

(4-36) may be simplified by a first-order lag model:

K
SF.(s) _ K, (4-37)
ay(s) 1+T7,,s
htk b, b
where K, =R and T, =—--—
‘ k. "k k

”

Fig. 4.16 shows comparative simulation responses of the tire load transfer. The second-order

model (4-36) shows a good accuracy, except for missing a sharp load transfer peak caused by
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nonlinear dampers in the full 10 DoF model. The first-order model predicts correct settling

time and steady-state value, but the response overshoot cannot be captured.

2000 : : :
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HaN — 1st-order lag model
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Fig. 4.16 Lateral tire load transfer for step-steer maneuver
(u=20m/s, w.=0.14, 0.23, 0.31 rad/s).

By utilizing the described (open-loop) model (4-36) or (4-37) and the lateral accelerometer

measurement a,, the lateral load transfer-related differential tire radii variation component J,
can be obtained from Eq. (4-5) (with the non-dominant speed term neglected):

5 =(8r, +0r,)/2 (4-38)

5rout,in = q3\/(an iész)s +q2\/(an iész)z +ql \len iéF‘z +q0 _rn (4_39)

r
e

where F, and r, are the nominal tire load and effective radius.

The effective tire radius vs. load nonlinear characteristic obtained from Eq. (4-39) is given in
Fig. 4.17 (black trace) and the nominal operating point (£, 7,,) is marked. The normal load

change +oF. due to the lateral transfer causes the rear wheels radii to change by the amounts;

+0dr;, (inner wheel) and -dr,,,; (outer wheel).
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Fig. 4.17 Illustration of tire effective radii differential variation
due to tire normal load transfer.

For the purpose of dynamic estimation error compensation, the linearized model of the tire
radii vs. load characteristic (red dashed trace in Fig. 4.17) may be used instead of the full
nonlinear model given by Eq. (4-39). The relevant differential radii variation approximation

5, =k, - JF,, obtained from the linearized model, does not differ much from the true value &,

although it may differ significantly with respect to or;, or ... Hence, the simple linearized
model can give a good approximation of the tire radius in a relatively wide range of tire load
changes (+2kN, Fig. 4.17). The benefit of this approach is that a single parameter k., is

required instead of four parameters g;.; for the nonlinear approach.

Compensation of the dynamic radii variation is based on including the differential radii

variation term 5,, into the nominal estimation equation (4-7):

A ~8)w, —(r,+6
a)z’d — (rn r) a)rr t (rn + r) a)rl (4_40)

If the linearized tire effective radius characteristic is utilized (5, =k, ,-oOF,), and the static

compensation (4-35) is accounted for, the final compensation expression reads:

D =", ki y0,)

4-41
t ¢ (a)rr + a)rl ) ( )

The simulation results in Fig. 4.18 demonstrate the effectiveness of dynamic compensation

during cornering maneuver, for the case of using second-order roll model. Furthermore, the
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road bank effect is inherently compensated for (Fig. 4.19), because the bank information is

contained in the lateral accelerometer signal a, in Eq. (4-36) or (4-37).
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Fig. 4.18 Comparative simulation results of Fig. 4.19 The effect of dynamic compensation

dynamic compensation of effective radii on yaw rate estimation errors for banked
variation for step-steer maneuver. road.

4.2.3 Concluding remarks

The major limitations of the non-driven wheel speed sensor-based yaw rate estimator include
a significant offset-type estimation error during braking maneuvers and a dynamics error
during transitions over road bumps. Furthermore, effective tire radii variations due to:
deflation of tire, roll and pitch dynamics, and road bank, introduce additional error
components. Finally, the non-driven tire dynamics introduce a variable delay and related
transient error of yaw rate estimation. This error increases with vehicle velocity, tire/vehicle
slip angle, and yaw acceleration, and it is relatively small (up to 10%).

In regard to tire effective radii variation effect, the differential tire radii change J, (caused by
roll dynamics, road bank, and single tire deflation) has much larger effect on the yaw rate
estimation inaccuracy (typical errors up to 40-60%) than the common radius change A,
(caused by both tire deflation/wear, road grade, and pitch dynamics with typical errors up to
5%). Moreover, the tire radii variation relative estimation errors increase rapidly with the
vehicle speed u and they are not influenced by the yaw rate level. The road bank introduces
additional estimation errors due to the differential radii change (up to approximately 12% for
the bank angle of 10°). However, the tire radii variation error components can be effectively
reduced by using open-loop compensators based on an estimated tire radii ratio for straight
driving (static compensation), and a vehicle roll and tire vertical deflection models fed by

lateral acceleration (dynamics compensation) in cornering.
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4.3 Estimation based on acceleration measurements

Apart from the non-driven wheel speed sensor-based yaw rate estimator approach described
in Section 4.2, kinematic estimator of the yaw rate can be designed by utilizing the
measurements of two accelerometers placed outside of the vehicle centre of gravity (see
Section 4.1 and references therein. In order to develop such a kinematic estimator, first the

kinematic model of the accelerometer measurements needs to be derived.

4.3.1 Accelerometer measurement kinematic model

The accelerometer measurement kinematic model is considered for the case of accelerometer
fixed at an arbitrary point M of the vehicle chassis horizontal plane containing the CoG point
(see Fig. 4.20). Thus, the sensor placement at point M is defined by two parameters: the senor

placement angle o and its distance ry from the CoG.
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Fig. 4.20 Vehicle chassis frame with aligned
accelerometer placed in point M.

The velocity of point M in the moving vehicle frame (x5, v, z5) is given by the following
matrix equation [39]:

Vo = Vo + Vg T O XTIy (4-42)
where v, = [u Vv w ] T is the velocity vector at the vehicle center of gravity, vmye 1s relative
velocity of the point M (e.g. vmre = 0 for this particular system), ® = [a)x 0, O, ]T is the

vector of angular velocities of the moving frame, and ry is distance of the point M from the

moving frame origin (i.e. CoG).
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The third term on the right-hand side of (4-42) relates to the transport velocity due to the

rotation of the moving frame. Accordingly, the velocity of point M can be derived as:

Vy = (u — ol sing, )ib + (v +o.l, cosa, )jb (4-43)
+ [w+ ol sine, -, cos ao]kb )
Acceleration of the point M is expressed as a time derivative of (4-43), and according to the

transport theorem equation [39] it reads:

ay = d;’;M = (d:;—;“jrel +OXV,, (4-44)
From equation (4-44) the acceleration components at the point M can be obtained. However,
the accelerometer placed at the point M senses an additional acceleration component due to
the earth gravity. This component depends on the orientation of the moving frame with
respect to ground, which is described by the Euler angles (¢, 6, and y, see Chapter 2), and it is

proportional to the gravity acceleration g. The gravity acceleration vector resolved on its

components in the vehicle body frame can be defined as:

g, = [g sind —gsingcosf —gcosg@cos 9]T (4-45)
Based on Eq. (4-44) and taking into account the gravity related components (4-45), the
general equations for the measured accelerations a, a,, and a. are expressed as:

a,=i-oyv+ow-I, cosao(a)i + a)f)

_ 7

xCoG (4-46)
+1, sin «, (a)xa)y - a')z)— gsind

. 2 2\
a,=v+ou-ow- ldf (a)x + w; )sm a,
—
e (4-47)
+1, (a)xa)y + o, )cos a, +gsingcosl

a, =w-—ou+oyv+l, (a')x + a)ya)z)sin a,
S (4-48)
+1y (a)xa)z -0, )cos a, +gcosgcosl
where a.c,, ayco, and a.c,¢ are the accelerations at the vehicle CoG without additive gravity
components. Due to the opposite directions of the accelerometer seismic mass displacement
and the related measured acceleration, the signs of the gravity acceleration components in

Egs. (4-46) to (4-48) are inverted when compared to the signs given in Eq. (4-45).
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4.3.2 Two accelerometers measurement configurations
The accelerometer kinematic measurement model equations (4-46) to (4-48) are used to

derive the kinematic estimator equations for the longitudinal, lateral, and diagonal

accelerometer configurations illustrated in Fig. 4.21.

Fig. 4.21 Accelerometer placement configurations: longitudinal - sensors 1&2,
lateral - sensors 3&4, and diagonal - sensors 5&6.

Longitudinal (tangential) configuration
The acceleration signals a,; and a,, measured by the accelerometers 1 and 2 in Fig. 4.21, are
derived from Eq. (4-47) for ap = 0° and oy = 180°, respectively:
a, =a,,;+l (a)xa)y + . )+ gsingcosd (4-49)
a,=a,,;—1, (a)xa)y + 0, )+ gsingcosf (4-50)

Adding up the measured signals given by (4-49) and (4-50) yields the lateral acceleration

estimation equation:

a,+a -
i, :leﬂ:ayCOG +Z1 212 (a)xa)y+a')z)+ gsingcosb (4-51)
On the other hand, subtracting the expressions (4-49) and (4-50) yields the yaw acceleration
estimate:
~  a,—a
o, =——"2=0 +0.0, (4-52)
[ +1,
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The yaw rate w, can be estimated by means of integration of the yaw acceleration estimate

[4,9].

&. =@, dt = (o, —a,,)dt =, + [ 0,0, (4-53)

L +1,
Lateral (radial) configuration
The signals measured by the accelerometers 3 and 4 in Fig. 4.21 read:

Ay =d,co6 s (a)f + )+ gsingcos@ (4-54)

a,=a,.+1|0 +w)+gsingcosd (4-55
y4 yCoG 4 X z

This yields the following kinematic estimators equations:

a.+a -
Ay=%=ay@c—l3zl4 (@2 + @7 )+ gsin gcos 0 (4-56)
3Ty

In this case the square power of yaw rate is directly derived by subtracting the accelerometers

measurements:

Cly4 —ay3

&, =sgn(w, )- (4-58)

L+l

what imposes the requirement on yaw rate sign estimation [4,8].

Diagonal (combined) configuration

The readings of new measurement configuration of diagonally placed accelerometers 5 and 6
in Fig. 4.21, proposed and applied for design of the kinematic yaw rate estimator in this
thesis, are given by:
s = 0,6 +1s(0] + 02)sine, + (0,0, + @.)cos a, + g sin pcos § (4-59)
A6 =y — 1 (@ +@))sina, — 1 (0,0, +®.)cosa, + gsingcosd (4-60)

Egs. (4-59) and (4-60) yield the following estimation equations:
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a.+a
a, :% =, +gsingcosd
L (4-61)
+%(a)f + @’ )sin a, +%(a)xa)y + a')z)cos a,
a,s—a, ,
y=r 0 b, + (0} + 0 ana, (4-62)
(15 +1 )cosao

where y denotes the accelerometer measurement term [4].

After neglecting the small roll and pitch rate terms on the right-hand side of Eq. (4-62), the

following estimator nonlinear differential equation is derived:

a°)2 +tana, @’ —y =0 (4-63)
This estimator combines the features of the algebraic estimator (4-58) and the “dynamic”
estimator (4-53). The following subsection describes a detailed algebraic analysis of the
estimation errors and evaluation of the dominant error sources for these three kinematic

models/estimators configurations (i.e. longitudinal, lateral, and diagonal).

4.3.3 Algebraic analysis of estimation errors
The estimation equations (4-51), (4-56), and (4-61) indicate that the estimated lateral

acceleration corresponds to the aimed one measured at the CoG (a,= ayco6 + g sing cosd),

provided that the two accelerometers are placed at equidistant positions with respect to CoG
(the nominal case: [, = b, 5= l4, Is= Is). The below algebraic analysis is, thus, focused on the

yaw rate estimation error for the same nominal case.

The performance of derived kinematic estimators has been analyzed against the major sources
of estimation errors by means of computer simulations and utilizing the appropriate validation
model structure outlined in Fig. 4.22. More precisely, a passenger vehicle 10DOF chassis
model [23] implemented in Matlab-Simulink is used in order to generate the vehicle dynamics
quantities signals, required for calculating the vehicle acceleration components based on the
realistic 6DOF kinematic measurement model described by Eqs. (4-46)-(4-48). Thus obtained
accelerations are then used as inputs for the derived yaw rate estimators defined by Egs. (4-
53), (4-58), and (4-63). At the estimator outputs the vehicle lateral acceleration, yaw rate, and
yaw acceleration estimates are obtained. They are compared to the reference values from the

10DOF model, in order to determine the estimation accuracy.

55



Yaw rate estimation

4 ™ 4 )
u
\4
w
3 6DOF x ”|  Simple
10DOF 7 ODOF ¥ > g
: / kinematic planar a,|
vehicle " a:f— : , y
: model of kinematics 4, |—»
dynamics o, > . ax) > delof o
model o > acceleration ay q model of 4 —»
@ »| Measurements q,,| estimator
z .
a:)x »
D —>
N /BN J

Fig. 4.22 Block diagram of validation model for evaluation of two-accelerometers-based
kinematic yaw rate estimators.

For the subsequent error analysis the following definition of the relative estimation error &

has been utilized:

Ep=—t=—"—2= (4-64)
where @, represents the absolute estimation error.

a) Vehicle roll and pitch dynamics-related errors

For the longitudinal accelerometer configuration the following expressions for the

estimation errors are derived from Eqgs. (4-52) and (4-64):

52 =00, = o, = Ja):dt = J.a)xa)ydt (4-65)
1
Ep = ZZ .[ .0 dt (4-66)

The roll and pitch rate transients are not expected to induce any significant peaks of the yaw
rate estimation error, because the product @@, is small and the integration process in (4-66)
further rejects the transient error. However, integration of the even small steady-state error

term @@, can result in a slow accumulation of yaw rate estimation error (a drift-like

behavior).

For the lateral configuration estimator expression (4-58), the related absolute yaw rate

estimation error reads:
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2
&, = a)[ 1+% —1] (4-67)

z

For the case of x = ./’ <<1 the square root term in (4-67) may be approximated by the
Taylor series expression:

_ e (r=x)" S )" (2n)! X" )
f(x)—\/1+x—;—n! S (xg) = ,,Z::;(l 4T (4-68)

where |x| <1land x, =0. After neglecting the higher series members (n > 2) in (4-68), the

following approximate equation for the yaw rate estimation error is obtained:

1 ’
& ! 4-69
Y (4-69)

z

According to the above expression, the yaw rate estimation accuracy of the lateral

configuration-based estimator is not affected by the vehicle pitch rate @,, but only the roll rate
Q.

Finally, for the diagonal configuration estimator (4-63), the estimation error is given by:

£, :L(l— —1} for &, =0 (4-70)
o tana, X

7 =00, +o0; tang, 4-71)
In this case, both roll and pitch disturbance terms @@, and®; from the longitudinal and
lateral configuration error expressions (4-66) and (4-69) are present in the combined

(diagonal) configuration error (4-70). Also, the integration process, needed to obtain @, from

(4-63), is expected to result in a drift-like error due to the disturbance term 7 .

Figure 4.23 shows the roll and pitch dynamics-related yaw rate estimation errors (i.e. its peak
values) as functions of the steering wheel magnitude o for the step steer maneuver, and the

braking torque (per wheel) 7, for braking in turn maneuver.

The lateral configuration estimator has the largest errors in both maneuvers (. = 7-22% for
cornering and @. < 2% for braking), because it is sensitive to roll dynamics. The longitudinal
and diagonal estimators provide similar performance in braking maneuvers, but the

longitudinal one is somewhat better for cornering. For all estimators the error increases with
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increase of the steering wheel angle (for cornering) and increase of the braking torque (for

braking), because in that cases the related roll (@,) and pitch (@,) rates increase, as well.

Altogether, these errors are rather small (lower than 5%) for the longitudinal and diagonal

configurations.
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Fig. 4.23 Roll and pitch dynamics-related yaw rate estimation transient errors
for cornering maneuvers (a) and braking in turn maneuvers (b).

b) Accelerometer misalignment angle-related errors

Another major source of errors of the accelerometer-based kinematic yaw rate estimators is

related to sensor misalignment. More precisely, the constraints in the accuracy of vehicle

assembly may cause a misalignment of the accelerometer axes (x,, V4, z,) With respect to the

vehicle body frame (xp, y», z5), as shown in Fig. 4.24. This misalignment is characterized by

the misalignment angle , as illustrated in Fig. 4.24.

AXb
Xa
Y
AxmX A Ax
< & /\
Yb )
Clym

Ya

Fig. 4.24 Accelerometer axis misalignment.
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The measurement of the misaligned accelerometer can be expressed as:

a,,,=a,,cosy,—a,siny, (4-72)

ym,i

where the subscript i=1,2,...,6 denotes the accelerometer number, as illustrated in Fig. 4.21.

The misalignment-related relative yaw rate estimation error is calculated by comparing the

yaw rate estimates of misaligned and aligned accelerometers:

Eppy = (4-73)

The accelerometers are assumed to be placed equidistant from the vehicle CoG (i.e. 1 =5L=1,

13 = l4 ly, and 15 = 16_ ld)

Combining Egs. (4-46), (4-47), and (4-72), and rearranging gives the following equations for

measurements of the misaligned accelerometers placed in the longitudinal configuration:

a,, = (ayCOG + gsingcos 49)cos 7, +1, (a)y2 + )sin 7 -74)
- ( a.c,c —gsin 9)sm v, +1 (a)xa)y + o, )cos 12

a,, = (ayCoG + gsin gcos 9)cos 7, =1, (a)j + o’ )sin 7,

ra 4-75
- (achG — gsin 6’)sin v, =1, (a)xa)y + o, )cos Vs ( )

From these measurements the yaw rate is estimated according to Eq. (4-53). The related

misalignment error defined by Eq. (4-73) is:

£ = ; ( [, dt—[ . )= wi [(@,, —d.)at (4-76)

Applying Eq. (4-52) and using the approximate terms for trigonometric functions of small

angles (i.e. siny = y and cosy = 1 for y = 0) gives:

yim ay2m a,—a

1—y2 —1—92
@ A ( +gsm¢cost9\'\/ 7 \/ 72
zm z 21 2[ yCoG 21
. \ x (4-77)

+(a) + @’ )7/1272—( o — gsin@)H L2 217/2

X

The third right-hand side term of Eq. (4-77) represents the dominant source of misalignment

error, because 7/12’2 and a)iz are relatively small. Namely, in the presence of large vehicle

longitudinal acceleration a,c,¢ and road grade (large @) the error may be quite high even for

small misalignment angles y; and .
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Combining (4-46), (4-47), (4-57), and (4-72) gives the following expression for square power

of the yaw rate estimate for the lateral configuration of misaligned accelerometers:

752;\/1_732 +a)f
7 (4-78)

- +
+ (axC()G - gSin 0) 7321 7/4 + a)zz - d)z 7/3 2 7/4

y

A2

@, = (ayCoG + gsin¢cos 9) \/1 —

zm

The misalignment-related relative error reads:

A A AD A
. —Q Vo, +E —@
Eugy = = (4-79)

z z

with

1_ 2 1_ 2
&y 2 (A0 +gsin¢cos6’)\/ }/421 \/ s
’ (4-80)

— 74 — . V3tV

. 73
+(a —gsin@
( xCoG — 8 ) 2ly )

In addition to the aforementioned dominant influence of the longitudinal acceleration/road
grade, estimation based on the lateral configuration of misaligned accelerometers is sensitive
to abrupt changes of yaw rate (i.e. to yaw acceleration @, ). Due to the absence of integration
(filtering) process in (4-79) when compared to (4-76), it is expected that the misalignment
errors will be larger than for the longitudinal configuration, but the drift-like effect will not be

present.

The measurement term y for the diagonal configuration defined by (4-63) is given in (4-62).

When the accelerometers are misaligned by the angles ys and ye, the measurement term y4

reads:
a m —a m . 7/ _7/
X ma =20 Moy _(axCOG —g51n9)5—6
2], cosa, 2/, cosa,
1—y2 —\1-y;
+(ayCUG + gsingcos 6’)\/ s \/ Ve (4-81)

2/, cosa,

+ (mzz + a)y2 )Lzyé + (Cf)xa)y -®, )tan a, Lzyé

The dominant misalignment error terms proportional to (a.c,c-gsind) and @, are filtered by the

estimator differential equation (4-63), so that the error should be significantly smaller than in

the case of the lateral configuration.
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Simulation results in Figs. 4.25 and 4.26 indicate that the accelerometer misalignment error of
only a few degrees can easily cause excessive yaw rate estimation errors. Moreover, the
lateral configuration estimator is found to be the most sensitive to the misalignment related
errors (red trace in Figs. 4.25 and 4.26). This is because the abrupt yaw rate changes
(large @_during step steer maneuver) and large longitudinal accelerations (large a,cog during
braking maneuver) affect the estimation error in a direct, algebraic manner (see Eq. (4-80)).
On the other hand, for longitudinal and diagonal configurations the integration process (see
e.g. Eq. (4-76)) filters the @_ and acog disturbance terms. Consequently, the error peaks are
largely rejected, but a drift-like behavior (slow increase of error) is present. The braking
maneuver is more critical then cornering, because of larger forward accelerations (e.g.
AxCoG = -2 m/s? for the braking in Fig. 4.26 and a.coc = -0.2 m/s2 for the cornering in Fig.
4.25).

0.3
0.25 ﬁ[""h 3333238333223 2222000 00
0.2 3 -t >
!:' ( Time interval for mean steady-
0.15 5; _state error calculation (Fig. 4.27a)
% 0.1 :
3 [
= 0.05 oo :
S| 0 i ( Time interval for transient )
' E error calculation (Fig. 4.27b)
-0.05 o
' ®, Reference
-0.1 ' :' ------ @, Longitudinal 7
015 I R @, Lateral |
' Y @, Diagonal
-02 h ! 1 I I i
0 05 1 1.5 2 25 3 35 4 45 5
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Fig. 4.25 Misalignment-related yaw rate estimation errors for step steer cornering maneuver
(55\4/ = 500) Tb = 0’ a] = 20} a2 = 30)
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Fig. 4.26 Misalignment-related yaw rate estimation errors for combined, step steer
(controlled velocity) and braking maneuver (9, = 23°, 7, = 300 Nm, o; = 2°, a; = 3°).

The misalignment-related estimation errors as functions of the accelerometer misalignment

angles (up to 5°) for maneuvers from Figs. 4.25 and 4.26 and different accelerometer

configurations are shown in Figs. 4.27 and 4.28, respectively.

10, —
1| sy |
— 0 __e—* 4
x l/./| —
S _10"/l /“/ —e—¢,,. Longitudinal ||
® // —v—¢,. Lateral
) —=—¢,. Diagonal
-20 \ I \
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« 0 e "%, Longitudinal —
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150 [ * e Diagonal T
b 5 4 3 -2 -1 0 1 2 3 4 5
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Fig. 4.27 Influence of accelerometer misalignment angles on yaw rate estimation error for
cornering maneuver (see Fig. 4.25): steady-state mean errors calculated in the time interval
2-5 s (a) and transient (peak) errors calculated in the time interval 1-2 s (b).
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Fig. 4.28 Yaw rate estimation errors vs. misalignment angles
for combined, step steer and braking maneuver in Fig. 4.26 att = 12.5 s.

The relative steady-state estimation errors for the cornering maneuver and any of
accelerometer configurations are within 15% for the considered misalignment angle span
(Fig. 4.27a). However, the lateral estimator has a disadvantage of a substantial transient error
(over 50%, Fig. 4.27b, see also Fig. 4.25). For the case of excessive braking the misalignment
related errors are unacceptable for all three accelerometer configurations (Fig. 4.28) The

errors diminishes for y, =y 10 because the dominant forward acceleration (a.c,¢) disturbance

term is canceled in that case (see Egs. (4-77), (4-80), and (4-81)).

¢) Accelerometer measurement noise-related errors

The impact of the measurement noise on the performance of all three estimator configurations
has also been considered and evaluated. Thus, for the noisy accelerometer measurements and

the lateral accelerometer configuration the noisy yaw rate estimate @, can be expressed as (cf.

Eq. (4-57)):
or =L TN T8 T o Ml (4-82)
2, 2,

where n3 and n4 are the sensor additive noise signals with the Root Mean Square (RMS) value

op, and @, is the corresponding noise-free yaw rate estimate. If the condition
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(ny—ny)/ 21, <@? is satisfied, and after applying Taylor series expansion according to

Eq. (4-68), the noisy yaw rate estimate can be expressed as:

_ 2 _1\" | _ n
. a)z +— 1 n4 n} _l(néi“ n32) Foe gt ( 1) (22) (I:Z\42 n3) (4-833)
20220, 8 @4l (1-2nm)nl*4" &> 2"1"

Furthermore, for (n, —n;)/2l, << @ ? the above estimate can be approximated as:

b~ b, 42T (4-83b)
4 ol )

In the case of steady-state conditions (@, (i)=®, = aT)Z") and after applying the rule for the

variance of the sum of random variables & (x, +x,) = 6> (x,) + o (x,) , the noise RMS value

of the estimated yaw rate o, can be derived according to the following equation:

o, = ﬁi( &, (i) + M aT)Zn]

P 41,0 (i)
1 [ V2.0,
s Jk 1Z(m(z) m(@) == —

i=1 yz

(4-83c¢)

The higher the yaw rate @. and the larger the accelerometer distance 2/,, the lower the noise

RMS valueo,

The longitudinal and diagonal configuration estimators (4-53) and (4-63) integrate the
accelerometers measurement signals, and they are, therefore, much less sensitive to the

measurement noise.

The yaw rate estimate noise RMS levels given in Table 4.3 are obtained from simulations for
the step steer cornering maneuver with the constant yaw rate of 0.14 rad/s and the following
distances of the accelerometers from the CoG: /[, = 1.5 m, /, = 1 m, and /; = 1.8 m. Table 4.3
confirms that the longitudinal and diagonal estimators have significantly lower noise RMS

values (approximately by two orders of magnitude) due to the integration process.

Table 4.3 Yaw rate estimation noise RMS values

Estimator Noise RMS
configuration Absolute [rad/s] | Relative [%)]
Lateral 3.173e-3 2.25
Longitudinal 1.146e-5 8.10e-3
Diagonal 1.067e-5 7.52e-3
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d) Accelerometer offset-related error

The inherent offset of the accelerometer measurement affects the accuracy of yaw rate
estimation. According to Eq. (4-57), the constant small accelerometer offset introduces a
constant small yaw rate estimation error for the lateral accelerometer configuration. On the
other hand, the longitudinal and diagonal configurations estimators (see Eqgs. (4-53) and (4-
63)) integrate the acceleration signal, and therefore they accumulate a drift-like estimation
error whenever the offset is present. The drift effect is generally less emphasized for the
diagonal configuration, because the first-order lag reconstruction is used instead of pure

integration.

A more detailed analysis of the accelerometer offset related drift-like estimation error, for
diagonal sensor configuration, has been carried out in order to gain better insight into
limitations of the pure-kinematic accelerometers-based yaw rate estimators. Namely, the
application of closed-loop estimator utilizing the EKF methodology (see Section 3.2) has
been considered in order to find out if such approach could ensure inherently smaller
estimation errors when compared to the estimates obtained from the basic open-loop
kinematic estimator (Eq. (4-63)). Thus, after linearization of the kinematic estimator equation

(4-63) the following continuous-time domain first-order lag-type transfer function model can

be derived:
b
G(s) = w,(s) _ 1 _ 2w, tana, __K, (4-84)
Xn(s)  s+2o,tanc, s 1+7T,s
2w, ,tana,

where the process model gain K, and the time constant 7, depend on the sensor placement
angle oy and the current yaw rate magnitude @ (i.e. the operating point). More precisely, at
smaller yaw rates (i.e. the worse signal-to-noise ratio), the process time constant 7, and gain
K, are larger. Hence, the inherent process model noise filtering feature is improved (i.e. the
process is characterized by improved noise suppression capabilities at smaller yaw rates),
while at the same time due to the larger K, the estimator sensitivity is increased. Note that as

the yaw rate decreases the accelerometers measurement signal y,, becomes smaller as well.

In the process of formulation of the closed-loop Kalman filter-based estimator, the following
discrete-time representation of the state-space process model is used as a basis for further

analysis:
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x(k)=Fx(k-1)+Qu(k -1), (4-85)
The state vector X, state transition matrix F, state perturbation matrix €, and state noise vector

v are given by:

N P

where T is the sampling time. The nonlinear output equation in the presence of the

accelerometer offsets read (cf. Eq. (4-63)):

ZaK)=h(x(k))+ 6, (k) +e, (k)= . (k)+tana, @ (k)+ S, (k) +e, (k) (4-86)
where y,, (unlike the measurement term y in Eq. (4-63)) is the accelerometers measurement
with included additive accelerometer offsets term o, , while e, is the zero mean Gaussian

measurement noise. The above measurement offset term can be obtained from the following

expression:

_ aySn _ayé()

“ 21, cosa,

where the a,5, and a,¢, are the individual accelerometers offsets for diagonal measurement

configuration (cf. Fig. 4.21).

The particular EKF algorithm is described by the following equations (see Section 3.2):

(k| k-1)=F&(k-1]k-1) (4-87)
ylk|k~1)=y(k)-h(x(k|£-1)

2, 0)- e b |- 1)+ .k 1) -
Pk |k—1)=FP(k -1k -1)F" +QQQ’ (4-89)

K, P(k | k- 1)H’ (k)

K(k)= [ KJ “ WPk kDA (})+ R (+90)
(k| k)=x(k | k—1)+K(k)¥(k |k -1) (4-91)
P(k|k)=P(k |k —1)-K(k)H(k)P(k | k —1) (4-92)

where the output matrix H(k) is obtained by linearization of the nonlinear output matrix

equation h(x) (i.e. by calculating the below Jacobian matrix):

_oh

Rt N

=[2tane, -, (k| k—1) 1] (4-93)
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Note that, instead of the unknown true instantaneous yaw rate .o, the a-priori state estimate
@, (k | k —1) is used in calculating the update of the output matrix H(k). The state covariance

matrix Q and measurement covariance R read:

Q=diag(lg, 4,])» R=r,.

For the considered EKF algorithm, the transfer functions G, and G, between the

corresponding state variables and the nominal, offset-free measurement y can be obtained
from the following matrix equation [51]:
G{u;( (Z)
G (z)= = AA-1-KH)F]'K (4-94)
xy
Gd);( (Z)

where K is the steady-state stationary Kalman gains matrix and I is the unit matrix. For the

consequent analysis only the transfer function G,,(z) =w-(z)/x(z) is relevant:

()= w.(2) 2(K,z-K,+K,T)
wy

_ _ 4-95
72 22+ K, +K,T)+K, -2-byw. K, —K,+1 (4-95)

where K, and K are Kalman gains and b, = 2tan .

In the presence of the accelerometers offsets the measurement model from Eq. (4-86) applies.
Consequently, by applying the Z-transform based on the zero-order-hold element, the process

model output equation is transformed into the following discrete-time model

z

w,(z)+ 5 (4-96)

1
Zm(Z)_;. z z-1 X2

where:

T

- (4-97)
1+27T -tan«,

Yo,

and the second right-hand side term relate to the accelerometers offset. In order to analyze the
effects of accelerometer offset to the EKF-based yaw rate estimation error @,, the transfer

function model given in Eq. (4-95) is employed:

0.(z)=d.(2)-0.(2)=G,,(2)7,(2)-.(2) (4-98)

After inserting y,,(z) from Eq. (4-96) into the Eq. (4-98), the yaw rate estimation error reads:

@,(z)=a.(z)-0.(2)=(G,,(2)-1)a.(z)+G,,(2)3, (4-99)

where:
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G- 28 () Lzop (4-100)
oz) " p oz
_a.z) _ z )
Gw;{O(Z)_ 5[(2)_Gw;{(z) Z_l (4 101)

By inserting the Kalman filter transfer function (4-95) into Eq. (4-101) yields the following

expression for yaw rate estimate vs. measurement offset transfer function:

_0.(2)
,(2)
oz 2K,z-K,+K,T)
T -1 P+l (K, +K,T)+ K, -2~ b K, —K,+1

Gw;(O (Z)
(4-102)

The steady-state yaw rate estimation error can be obtained from Eq. (4-99) by applying the
final value theorem [52,53]:

@.(k = )=lim(z -1)@,(z)

- llgrll(z -1(G,, (z)-Da,(z)+ lzigll(z - I)Gw;(o (2)5)( (2) (4-103)

The measurement offset o, and yaw rate w. are assumed to be constant. The second right-hand
side term in Eq. (4-103) defines the steady-state estimation error induced exclusively by the
measurement offset. Inserting the transfer function G, ,(z) from Eq. (4-102) into Eq. (4-103)

yields the following expression for steady-state offset-related estimation error @, :

o

a);(O' x

@.,(k = 0)=lim(z-1)G

z—l1

. \ 2 Z(K z—K +KAT) (4-104)
=1lim(z 1) = @ . o
21 z-1 22 +[byow. (K, +K,T)+K,-2]z—bhw.,K,—K,+1 *

After some rearranging the final equation for the estimation error is obtained:

@,k >0)=———§5 (4-105)
2tane, @, *

Equation (4-104) indicates that the offset-related steady-state estimation error does not depend
on the choice of the estimator parameters (i.e. estimation gains K, and K, ) but only on the
operating point w.o. Therefore, the estimator which utilizes accelerometer measurements only
cannot compensate for the additive measurement offset error. The above equation also
suggests that the relative steady-state estimation error can be very large for small yaw rates,
because the relative error r=a,,/w,, is inversely proportional to the yaw rate squared.
Consequently, the drift effect for the diagonal configuration is most emphasized at small yaw

rates (large error transfer function gains).
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The results illustrated in Fig. 4.29 are obtained from simulations for the diagonal
measurement configuration and the following accelerometer offsets a,;s = 0.05 m/s* and
dogs = -0.03 m/s” (i.e. Yot = 0.0314 s72). The drift-like estimation error accumulates quite
rapidly (according to the 2™*-order dynamics described by Eq. (4-102)) for ¢ < 1s when . =
0, while later it increases at much slower rate. This is because the rate of the error increase is
inversely proportional to the yaw rate magnitude as shown in the above analysis, while the
longitudinal configuration is characterized by constant/high error accumulation rate for a
given sensor offset and sampling time.
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Fig. 4.29 [llustration of acceleration offset-related errors for
diagonal estimator and step steer maneuver.

4.4 Fusion of the wheel-speeds and acceleration based estimation
approaches

The combined kinematic estimator concept described herein is based on the fusion of
measurements of two accelerometers placed in diagonal configuration upon the vehicle
chassis (this configuration is favored over the lateral and longitudinal ones illustrated in Fig.
4.21, because it has the best overall performance in terms of the estimation accuracy) and the
speed sensors of the rear non-driven wheels (i.e. the front wheel drive vehicle is implied). The
sensor setup is illustrated in Fig. 4.30. This fusion estimator utilizing the adaptive extended
Kalman filter (EKF) methodology (see Chapter 3) is used in order to overcome the
restrictions upon the estimation accuracy of the previously described, individual kinematic
estimators (cf. Sections 4.2 and 4.3) and to benefit from their complementary advantages.
More precisely, the main disadvantage of the accelerometer approach is the sensor offset-

related drift-like estimation error and a high sensitivity to sensor misalignment errors, while
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the ABS yaw rate estimation approach is compromised in the cases of braking, tire deflation,
or road disturbance. Within the proposed sensor fusion-based kinematic estimator the ABS
measurements are used to compensate for the accelerometer offset-related estimation errors,
while the accelerometers compensate for the inaccuracy of the ABS sensors-based yaw rate
estimate during braking. The developed estimator also takes into account the effects of the
effective tire radii variation due to tire deflation, vehicle lateral load transfer, and road

disturbances.

m

Fig. 4.30 [llustration of the sensor configuration for the combined, fusion-based
kinematic yaw rate estimator.

For the purpose of fusion-based estimator design, the process model is established based on
Eq. (4-41) (i.e. the wheel speed sensor-based yaw rate estimation equation including the
compensation coefficients k., and k., for eliminating the static and dynamic effective tire
radii variations-related errors) and Eq. (4-63) (i.e. diagonal accelerometers measurement-

based yaw rate estimation equation) extended by the accelerometer offset:

k., OF
c,d z (60 + a)rl) (4-1063)

r

.. = 7 (60”. - kc,.y @, )_

a '_a'r a b_aro .
o=l 2 ) vl tga, + 6, (4-106b)

2l,cosa, 2l,cosq,

where a,;, and a,,, are the accelerometers offsets, and 0, is the offset-related measurement
error term. For the analysis, these quantities may be considered to have constant values, while

usually they slowly change with temperature, aging etc.

The process model is represented by the following set of state-space equations:

=w.+v_, =0 , =0, 4-107
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where the yaw rate @_, the yaw acceleration @_, and the accelerometer measurement offset

z

0, are modeled as random walk-type stochastic states. By applying the Z-transform based on
the zero-order-hold element, Eq. (4-107) can be transformed into the following discrete-time

model:

x(h)=Fx(k-1)+Qu(k-1) (4-108)
with x, v, F, and Q defined as (7 = sampling time):

10) v 1 T 0 7 0 0

z 4]

x=|w.|,v=|v, |, F=|0 1 O0f,and Q={0 T 0

@

5 v, 00 1 00T

/4
The following process model output (measurement) equation comprises the combined

measurements of accelerometers y,, and wheel speed sensors @,,:

y(k) =h(x(k)) +e(k)
(4-109)

2,0 [tana, wX(k)+a.(k)+5,(0)]| [e, k)
= +
e, (k)

where e, and e,, are zero-mean Gaussian measurement noise components with the variances r,

@, (k) . (k)

and r,, respectively. Note that the state-space process model from Eq. (4-108) is linear while

the nonlinearity is only present in the output equation (4-109).

The Extended Kalman Filter (EKF) equations (see Subchapter 3.2) for the stochastic system
defined by Egs. (4-108) and (4-109) read [2]:

R(k [k =1)=Fx(k—1]k-1) (4-110)
¥k [k —1)=y(k)-h(x(k| £ -1))

2a6)] | 1ga,@(k |k =1)+ o, (k |k -1)+5,(k | k-1) (4-111)
Lm(k)]_ o.(k1k-1)
P(k|k-1)=FP(k -1k -1)F" + QQ(k - )’ (4-112)
K= O @113)
(k| k)=%(k | k 1)+ K(k)§(k |k 1) (4-114)
P(k | k)=P(k | k —1)- K(k)H(k)P(k | k 1) (4-115)

where Q is the state noise conditioning matrix defined as Q=71 .
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The observation matrix H is obtained by linearizing the nonlinear process model output
equation (4-106), which yields:

X =0, +2tane, @, +9, (4-116)
where @_, is the yaw rate operating point. For the purpose of the convenience, the yaw rate a-

priori estimate @ (k |k —1) is used within the EKF algorithm for calculating the output matrix

update:

2tana,@. (k|k—1) 1 1
H(k)= :
1 0 0
Assuming that the stochastic state perturbations (v, ,v,, andv,, ) and the measurements

noises (e, ande,) are mutually independent, the state covariance matrix Q and the

measurement noise covariance matrix R are defined as:

Q(k)=diag(lq, a, a¢;k)])), Rlk)=diag(|r, r,(K)]) (4-117)
where g5 and r, are set to be time-variant in order to implement an adaptive feature of the

extended Kalman filter. The elements of these matrices represent the EKF tuning parameters.

The adaptive yaw rate estimator based on the sensor fusion concept and the EKF
methodology is shown in Fig. 4.31. The combined accelerometer measurement y,,, which
comprises the individual accelerometer measurements a,rand a,, according to Eq. (4-106) and

the wheel speed sensor-based yaw rate estimate @.,, are used as input signals to the Kalman

filter. The initial, wheel speed measurement-based yaw rate estimate @_,. is obtained by

compensating the dominant, effective tire radii variation-related estimation errors from the

raw estimate @_, (see Subsection 4.2.2 and [48,49]). This signal is then applied as the input

zw

to the RBD block which detects the road bump disturbance as explained below. Within the

RBD block, the @,, signal is filtered by a moving average filter in order to suppress

oscillations in the estimation signal caused by the wheel speed sensor imbalance (lower
frequencies and higher amplitudes) and tooth width errors (lower amplitudes and higher

frequencies).

Within the Kalman filter, the yaw rate, yaw acceleration, and accelerometers measurement

offset (w,,®,, and 5, ) are defined as Kalman states. Depending on the confidence levels for

each of the utilized sensors, the related elements of the state covariance matrix Q and
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measurement noise covariance matrix R are adapted. Thus, when the accelerometers approach
is to be utilized the ¢;(k)eQ and r, (k)€ R should be set to high values (in case of low

confidence of the wheel speed difference-measurement). On the other hand, if these Kalman

filter tuning parameters are set to low values, the wheel speed sensors approach is used.

Tb,rl
Tb,rr
RBD
a)w,rl - ¢
© > 2 a)w,rr - a)w,rl C?JZ 4 A
” » H H
wrr Lyl t 7| Adaptive covariance
~ 2 matrix computation
¢ a)ZW wZ p
T Open-loop | @ane RBD
> compensation [ ™| Filtering
. T a, 5 | Extended 5
¥ 2w Kalman Filter | "z,
—»  Accelerometer .
a » . A .
] measurement model 7. |Statest @ @ 5,

Fig. 4.31 Block diagram of adaptive EKF-based yaw rate estimator.

The EKF adaptation algorithm is shown in Fig. 4.32. It switches the state variance g (k) and
the measurement noise variance rg(k) from Eq. (4-117) to discrete predefined values
according to Eq. (4-118). The variance values correspond to confidence levels of the
individual sensor measurements. The Boolean condition function C(k) (Fig. 4.32) is defined
based on the braking status (i.e. “Braking Status” flag, BRS(k) = 1 for braking), magnitudes
of the yaw rate and yaw acceleration, and the road bump disturbances detection (i.e. “Road
Bump Disturbance” status flag, RBD(k) = 1 when the road bump disturbance is detected).
95> 1,y 1 C(k)=TRUE

lg;(6) 7, (k)]= (4-118)
4y, 1, ifC(k)=FALSE

In former equation, the subscripts L and H denote ‘low’ and ‘high’ value of the related

parameter. The above, relatively crude logic is used here for the sake of illustration. In

application, it may be refined by using weighting functions and similar.
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Fig. 4.32 Block diagram of adaptation mechanism.

Accelerometers are predominantly used (C(k) = TRUE) during intervals of emphasized yaw
rate change (e.g. step-steer maneuver) and when the wheel speed sensors accuracy is
compromised (i.e. during braking or in presence of road bump disturbance). On the other
hand, the wheel speed sensors are utilized (C(k) = FALSE) during quasi-steady state intervals
(e.g. steady cornering maneuvers or straight driving), especially for small yaw rates at which

the accelerometer-based estimate drift errors are the most emphasized (see Subsection 4.3.3d).

According to the analysis given in Subsection 4.2.1d the road bump disturbance can introduce
a significant pulse-like error into wheel speed sensor-based yaw rate estimation. Namely, due
to the large magnitude of such abrupt estimation errors the road-bump disturbance conditions
must be monitored, and in the case of detection, the estimator should be switched to the
accelerometer mode. To this end a detection algorithm and corresponding RBD status flag
assignment have been implemented by monitoring the variance of the wheel speed sensor-
based yaw rate estimate. Note that, abrupt changes of the yaw rate during step-steer
maneuvers also result in an increased yaw rate estimate variance. The detection algorithm
cannot make a distinction between these two cases. However, this is not a critical constraint,

because the accelerometer mode should be used for both cases.

In order to detect the road bump disturbance, the signal variance o°(_,. ) is calculated on-

line over a fixed time window by utilizing the delay buffer of length N,. If the calculated
variance is larger than the preset threshold value Vy, for at least N,; < N, consecutive samples
the RBD status flag is set and the wheel speed sensor-based estimation is disabled. Similarly,
the RBD flag is reset and the wheel speed-based estimation is enabled if the variance is lower

than the threshold value for at least N,, < N, consecutive samples.

In order to benefit from this detection algorithm the time delayed copy of the initial wheel

speed sensor-based yaw rate estimate @__(¢t— N,T) should be applied to the Kalman filter
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input. However, this delay will not have significant effect on the estimation accuracy, because

the wheel speed sensors estimation mode is used for the slowly changing yaw rates.

The adaptive EKF estimator performance has been analyzed by comparing the estimated yaw
rate signal with the reference obtained from a detailed 10DOF vehicle dynamics model [23]
for various driving maneuvers. In these simulations the realistic wheel speed sensor model
with imbalance and tooth width errors has been used. Accelerometers offsets has been set to

a,, = 0.005g and a,,, = - 0.003g (this corresponds to 5, = 0.0314 s?).

Comparison of the adaptive EKF-based estimator performance with respect to those of
individual kinematic estimators for the step-steer maneuver is given in Fig. 4.33. In this
maneuver the braking torque of 7, = 300 Nm per wheel is applied in the time intervals 3-5 s
and 11-14 s and the road bump disturbance is applied at # = 10 s. The wheel speed sensors-
based approach has large estimation errors during braking periods and road bump disturbance,
while accelerometer approach has significant drift-like error, particularly at low yaw rates

(Fig. 4.33a).

The estimation results for the adaptive EKF based estimator (Fig. 4.33c) show that all
dominant estimation errors are significantly reduced by applying the proposed sensor fusion
concept. The remaining errors are mostly well within 10% of the reference value (Fig. 4.33d).
The condition function C(¢) is shown in Fig. 4.33b in order to illustrate the adaptation feature
of the estimator. It is evident that estimator operates in the accelerometer-mode (C(7)=1)
during time intervals with significant wheel speed sensor errors (braking, road bump, and
transients). On the other hand, the wheel speed sensor mode is active during quasi-steady-
state yaw rate intervals only (C(f) = 0), and it enables the accelerometer drift-like error

compensation.
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Fig. 4.33 Illustration of adaptive EKF-based yaw rate estimator accuracy
for step-steer maneuver.

Fig. 4.34 shows the results for the case of a double lane change maneuver with emphasized
oversteer intervals, which are characterized with large yaw rate amplitudes and lateral sliding
of the rear (non-driven) wheels. In this maneuver, the brakes are kept inactive and no road
bump disturbance is considered. Therefore, the wheel speed sensor-based estimator does not
have significant estimation errors, while accelerometers still accumulate drift-like error
(Fig. 4.34a). When using the adaptive EKF, the estimation errors are rather small, mostly

within 0.05 rad/s, when compared to the yaw rate span of £ 1 rad/s (i.e. under 10%).
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Fig. 4.34 Illustration of adaptive EKF-based yaw rate estimator accuracy
for double lane change maneuver including oversteer behavior.
4.5 Summary

The adaptive Extended Kalman Filter (EKF)-based kinematic yaw rate estimator has been
designed. It combines two basic kinematic estimation approaches: the two-accelerometers

approach with diagonal sensor placement, and the non-driven wheels speed sensors approach.
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Such a combined estimator, implementing the sensor fusion approach, is aimed at taking
advantage form the complement advantages and disadvantages of the two individual

estimation concepts.

In order to pave the ground for maximizing the efficiency of the fusion methodology and
minimizing the estimation errors, a detailed analysis of the major error sources of individual
approaches has been carried out. The major source of estimation errors for first approach is
the accelerometer offset that causes the drift-like estimation error, while the second approach
cannot be used during braking and it is sensitive to the tire effective radii variations and road

bump disturbance.

The proposed adaptive Extended Kalman Filter (EKF)-based estimator significantly reduces
the overall estimation errors by utilizing the fusion concept of the two kinematic estimation
approaches. Accelerometers are predominantly used during yaw rate transients and when the
accuracy of the wheel speed sensors is compromised, while the wheel speed sensors are

utilized during the quasi-steady-state yaw rate intervals.

In order to further improve the reliability of the wheel speed sensors, the open-loop
compensation of the dominant wheel speed sensors-based estimation errors has been
implemented. These static and dynamic compensation algorithms have been derived and
embedded into the estimator to reduce the tire deflation/wear and lateral load transfer-related
estimation errors. Furthermore, the adaptation algorithm is equipped with the road bump
disturbance detection feature, in order to remove the potentially large, environment-related

wheel speed sensors-based estimation errors.

The adaptive EKF-based estimator performance has been verified by simulation, and it has
been shown that in various driving maneuvers the proposed estimator provides superior
overall estimation accuracy when compared to performances of the individual kinematic
estimators. The estimation errors are mostly well below 10% for a wide range of driving

conditions.
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5 Kinematic GPS/INS fusion-based
sideslip angle estimation

5.1 Background

Existence of accurate sideslip angle information allows for implementation of a sideslip
feedback loop in addition to the traditional yaw rate control loop (a state-space controller).
This can improve robustness of the overall vehicle dynamics control strategy. The main
obstacle for a successful implementation of such a state-space controller relates to difficulties

with sideslip measurement (high cost) or estimation (inaccuracy/sensitivity).

This Chapter deals with kinematic sideslip angle estimation based on the application of
Kalman filter methodology and fusion of standard inertial sensors (lateral accelerometer and

yaw gyroscope) and low-cost GPS receiver measurements.

Recent introduction of new vehicle dynamics sensors such as Global Positioning System
(GPS) receivers [7,13,16,56-58] or 6DOF inertial measurement units [14] opens significant
new possibilities towards viable sideslip angle estimation based on advanced sensor fusion
concepts utilizing the Kalman filtering methodology [2,14,30]. More precisely, the inertial
sensors can provide fast sideslip angle estimate response, but it suffers from potentially large
drift due to the inertial sensor offsets, and it is sensitive to modeling errors (e.g. road bank
influence). On the other hand, the GPS can provide accurate velocity estimates, but its
sampling rate (typically 1 Hz) is too low for vehicle dynamics control applications and it has a
limited availability (e.g. in urban canyon regions). The fusion of these two concepts has a
good potential to benefit from the complementary advantages of the two individual

approaches (i.e. sensors technologies).

The concept of GPS/INS sensor fusion proposed herein and in [54] relies on a kinematic
vehicle model for fast sideslip angle estimation, while it utilizes slow GPS velocity
measurements to compensate for the inertial sensor offset effect and modeling errors. The
sensor fusion is conducted through Extended Kalman Filtering (EKF) approach [2,14,30]. The
process model includes the kinematic vehicle model extended with random walk processes for

accelerometer and gyro offsets. The GPS correction is conducted through model output
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equation giving velocities in the inertial coordinate frame. The estimator has been verified by

computer simulations using the 10DOF vehicle dynamics model [23].

5.2 Kinematic models and related kinematic estimators

The vehicle body motion and related inertial sensors and GPS measurements can be described
by a set of kinematics equations. In order to formulate these equations, which are essential for
designing the kinematic sideslip angle estimator based on the fusion of the INS and GPS
measurements, an appropriate coordinate frames need to be defined (Fig. 5.1). The inertial
coordinate frame (X Y Z) is used as a reference frame, while the moving frame (X, Y) Z5) is
fixed to the vehicle body (Fig. 5.1a). Within the inertial frame the vehicle heading/yaw angle
v, the vehicle track angle/course ¢, and the vehicle velocity V are defined. The vehicle body-
fixed frame origin resides in the vehicle body center of gravity (CoG) and its axes point in the
forward, lateral, and upward direction. Within this moving frame, the vehicle velocities (u -
longitudinal, v - lateral, and w - vertical) and angular speeds (@ - roll rate, @, - pitch rate, and

@. - yaw rate) are defined as illustrated in Fig. 5.1b (see also Chapter 2).

A

=<

a) X b)

Fig. 5.1 Definition of vehicle motion kinematic model coordinate frames (a) and kinematic
state variables (b) with application to development of the GPS/INS fusion-based sideslip
angle estimator.

The vehicle sideslip angle S can be defined within the inertial coordinate frame (Fig. 5.1a), as
a difference between the vehicle course and heading angles, Eq. (5-1), or alternatively it can

be derived according to Eq. (5-2) from the vehicle velocity components defined within the

vehicle body-fixed coordinate frame (Fig. 5.1b):
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b=o—y (5-1
p= atan(g) = asin(%) (5-2)

The absolute vehicle velocity V' can be expressed by means of corresponding kinematic

variables (i.e. the velocity components), in both inertial and vehicle body-fixed frames:

V=Au®+v: = [V 40} (5-3)
V=ucosf+vsinB=V, cosp+V sing (5-4)
The components of the vehicle velocity V in the inertial coordinate frame V, and V) can be
derived from the vehicle velocities in the vehicle body-fixed frame (z and v) and vice versa:
V. =ucosy —vsiny (5-5)
V, =usiny +vcosy (5-6)
The considered vehicle motion kinematic model and related state variable estimator rely on
the measurements of lateral accelerometer a,,,, and yaw rate gyro @.,,, which are placed in the

vehicle CoG and represent the inertial sensors typically used within VDC ("Vehicle Dynamics

Control") systems. These measurements are described by the following expressions (see [30]):

a,,=vtou—ow+gsngcosb+a, . +v, (5-7)
a,, =L't—a)zu+a)xw—gsin6+ax,oﬁr +u, (5-8)
a)z,m = a)z + a)z,ojf + Ua) (5_9)

where a, .y and @. .5, and v, and v, are accelerometer and gyro offsets and measurement
noise, respectively, while ¢ (suspension roll and road bank) and € (suspension pitch and road
grade) are total roll and pitch Euler angles, respectively. For most applications the third right-
hand side term in Eq. (5-7) can be neglected, because the vertical velocity component w is
small and it may be conveniently modeled as an additional noise component in vy.
Furthermore, the approximation of trigonometric functions (sing = ¢ and cosf = 1) can be
applied for the small-angle assumption. Thus, the following approximate expression of lateral

acceleration measurement holds:

a,,B =v+ou+gd+a

y,m

v T Va (5-10)
The offsets of inertial sensors measurements a, .y and @.,; represent a dominant source of

errors in estimating the lateral velocity v and the heading angle y. Namely, since these
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estimates are obtained by direct integration of inertial measurements, they are prone to drift in

the presence of sensor offsets.

Apart form the inertial sensors, the GPS receiver, typically used for navigational purposes (i.e.
vehicle position monitoring), can be utilized to obtain vehicle velocity, heading, and course

[16,58]. Namely, the GPS receiver can provide three-dimensional vehicle velocity

measurements in the inertial coordinate frame, V ys , Vi, and V%, whereof the north and

east velocity components are of the main interest for the automotive applications. These

velocities are given by (see Fig. 5.1b and Eqgs. (5-5) and (5-6)):

VieEV +e, =ucosy —vsiny +e, (5-11a)

Vops 2V, +e, =usiny +vcosy +e, (5-11b)
where e, and e, are measurement errors of north and east velocity components, respectively.
The GPS-based velocity measurement errors change with satellite geometry or PDOP
(Position Dilution of Precision) and/or multi-path errors [68,69]. Typical velocity

measurement accuracies (lo confidence range) are 2-5 cm/s for the horizontal velocity

components (i.e. north and east) and 4-10 cm/s for the vertical component [16].

Unlike the inertial sensors, the GPS receiver provides unbiased velocity measurements.
However, the main drawbacks of the GPS-based measurements are related to occasional loss
of signal and a low update rate (typically 1Hz for low cost receivers) that is insufficient for

the vehicle dynamics control applications.

The sideslip angle estimators can be derived by utilizing the vehicle kinematic models derived
solely from inertial sensors measurement equations, but in that case they should rely also on
some kind of vehicle dynamics model (as proposed in [18]) in order to be able to compensate
for drift-like estimation errors inherent to kinematic INS-based estimators. Derivation of such
kinematic models aimed for the sideslip angle estimation, relying only on the measurements

of the inertial sensors (i.e. accelerometers and gyros) is overviewed hereafter.

Based on the basic kinematic equations (5-3) and (5-4) and definitions of the vehicle velocity
components (# and v) in the vehicle body coordinate frame (see Fig.5.1) the following
expressions can be obtained:

u="Vcosp

v=Vsinf (5-12)
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The following equations for the longitudinal and lateral vehicle accelerations are obtained by
presuming zero roll and pitch angles and zero road grade and bank angle (i.e. driving on a flat
road is assumed so that the unknown gravity acceleration components in the accelerometers

measurement can be omitted, cf. Egs. (5-7) and (5-8)).

a, =u—-w,y= Vcos,B—V,Bsinﬂ—a)zVsinﬂ

a, :\>+a)zu:Vsinﬂ+Vﬁ'cosﬂ+a)chosﬂ 6-13)

a, = L:SX,B + Vtanﬂ(,BJr o, )}sinﬂ +Vficos B+ .V cos fB (5-14)
After rearranging, Eq. (5-14) reads:

fro = a,—a, tanf (5-15)

V(tanﬂsinﬂ +cos ,B)
If the small angle approximation applies (i.e. sinf=pf, tanf~ f,andcosff~1) the

following expressions are obtained:

fro, =Y (5-16)
: Viﬁ2+1i
. 1 ay 3 a, 3 i

Finally, after some rearranging of the above equation, the following expression (given in [1])

is obtained:

po—t 1, g% g, (5-18)
gy Ty :

Presuming that f << and that a, is small or moderate, the above equation can be reduced to:

. a
p=-o. (5-19)

Alternatively, the same approximate expression (i.e. Eq. (5-19)) can be derived starting from:

a,=v+o.u (5-20)
,6’=atanlzK (5-21)
u u

Presuming small or moderate longitudinal acceleration a, (i.e. small and moderate u typical
for cornering maneuvers), Eq. (5-22a), obtained by differentiating Eq. (5-21), can be

approximated according to expression (5-22b):
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v=Lfu+pu (5-22a)
Vv IB u (5-22b)
For most driving conditions the longitudinal velocity u is much larger than the lateral velocity

v, so that the expression u = V holds, and, therefore, the sideslip rate can be obtained as:

. a
f=""-o, (5-23)
u
Consequently the lateral acceleration reads:
a, =B+, )u (5-24)
In the case of the vehicle spinout the second right hand side term in Eq. (5-22a) can no longer

be neglected and consequently Eq. (5-22b) does not hold. The expression for the lateral
acceleration can be obtained by inserting Eq. (5-22a) into Eq. (5-24) and it reads:

a, =(f+a. )u+ pBi (5-25)
After rearranging the equation for the sideslip rate can be obtained [10]:
. a ;
p= Pl (5-26)
u u
The basic sideslip angle kinematic estimator utilizing solely the inertial sensors and state

space representation (5-28) of the vehicle kinematic model is originally proposed in [12].

u=vo, +a,

5-27
V=-um, +a, ( )
x=Ax+Bu (5-28)
y=Cx

The state-space model vectors/matrices are defined as x=[u V]T, u= [ax a, ]T,

0 o, 1 0
A= NE B= Rk and C:[l O] whereat u, a,, a,, and @. represent the
)

available measurements of the vehicle dynamics variables. This model becomes unobservable
in the circumstances of the straight line driving (i.e. for @. = 0). For that reason the original
estimator equation. (5-29) is in [70,71] extended with the physical model of the vehicle lateral
dynamics given in Eq. (5-30).

H ) Do ﬂ{quHﬂ(“‘”) (5-29)
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b+, p— (5-30)
a,= ll:ZCf [tan - [V#J -~ 5] +2C, tan™' (”—’wzﬂ
m| u u

Combining the two above defined kinematic estimators provides the more robust estimator.

However, it still has the problem with accumulation of drift-like error due to integration of the

inertial sensor measurement offset.

5.3 Basic estimation concept
The basic concept of the proposed EKF-based sideslip angle estimator [54] utilizes the sensor

fusion concept by combining the high rate, biased inertial sensors measurements with the low
rate, unbiased GPS velocity measurements. The considered vehicle motion kinematic model

and the related estimator rely on the measurements of lateral accelerometer and yaw rate gyro

(ay,m and @ ):

a,,=v+ou+a,, +0, (5-31)

y=0.,=0.+t0,,+0, (5-32)
where a, 7 and @. ., and v, and v,, are accelerometer and gyro offsets and measurement
noise, respectively. The approximate equation (5-31) is derived from the exact model given in
Eq. (5-7), by neglecting the small vertical velocity-related term @w and the gravity
acceleration-related component gsingcos@ whose impact on the estimator performance will
be analyzed later in Subsection 5.3.2. The kinematic model of GPS-based north and east
vehicle velocity measurements V. and V. is defined as:

Vs =V. +e, =ucosy —vsiny +e,

Vips =V, +e, =usiny +vcosy +e, (5-33)
where e, and e, are the measurement errors of north and east velocity components,

respectively.

The model equations (5-31)-(5-33) can be extended with random walk processes for the
unknown inertial sensor offset variables a,, .y and @. .45 and rewritten into the following time-

variant continuous-time state-space process model form:
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v 0 0 -1 u V 1 -4 v,
4 00 0 -1 v 0 1 |a,, v,
- + +1
i,y | 100 0 0fa,|]0 0]a, O, (5-34a)
_Cbz,oﬁ’_ 0 0 O 0 __a)z,o_ff _O 0 | _U(x)oﬁ’
x = A x + B u +W-o
vE | [dsing +veosy | [e,]
= +
_VGI;S ucosy —vsiny e, (5-34b)
y = c(x) + e

where the lateral accelerometer and yaw gyro measurements a,,,, and @.,, are inputs, while the
vehicle lateral velocity v, the yaw angle y, and the accelerometer and gyro offsets a,, .y and
@: o are process state variables. The vehicle longitudinal velocity pre-estimate # is derived
from the non-driven (rear)’ wheel speed measurements by utilizing the following equation

(see Chapter 4):

uA - %(a)’l + a)rr) s (5_35)

and this pre-estimate is treated as a slowly varying parameter of the state-space process model
given in Eq. (5-34). Therefore, the state-space model (5-34a) has a linear, time-variant form.

On the other hand, the output equation (5-34b) is nonlinear.

The linearized discrete-time process model needed for the EKF design can be obtained from
the continuous-time model (5-34) by applying the Z-transform based upon the Zero-Order-
Hold (ZOH) method and linearizing the nonlinear output equation (5-30b) around the

operating point (v,,y, ) [54]:
x(k)=F(k —1)x(k —1)+ Gk —1)u(k —1)+ Q(k —1)v(k —1) (5-36a)
y(k)=H(k)x(k)+e(k) (5-36b)
where x(k) = [v v ayop @0 1%, u(k) = [ay,m w-m]", and y(k) = [Vie Vi 1%, and the

matrices of the discrete-time process read:

% For the FWD vehicles the front wheel speeds measurements should be used and the effect of the steering wheel
angle should be accounted for.
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Lo -7, k)T, T, k)T,
01 0 -T 0 T

Flk)= T k)= S, Qlk)=1,,T
00 0 1 0 0

(5-37)

_6c(x)_ cosy, (k)  d(k)cosy,(k)—v,(k)siny,(k) 0 0
H(k)_ _|:—Sinl//0(k) —i(k)siny, (k)—v, (k)cosy, (k) 0 0}

The parameter 7, denotes the sampling time of the inertial sensors measurement signals. It
should be noted that the GPS-based vehicle velocity measurements are sampled at much

higher sampling basis T, = nT; (e.g. Ty = 20 ms, and 7, = 1000 ms).

The Extended Kalman Filter (EKF) equations for a general case of the nonlinear process and

measurement model, given in Chapter 3, applied to this particular process model read:

%k |k-1)=F(k -1)%(k 11k =1)+ G(k —1u(k —1) (5-38a)
Pk | k—-1)=F(k -1)P(k 1]k -1)F" (k-1)+ QQ(k —1)Q" (5-38b)
(k| k=1)=y(k)-h(&(k | k1) (5-38¢)

(k)= Hf(k)ll:((:||: - 11)):115 ((/f))+ R(6) (5-384)
(k| k) =%(k | k -1)+ K(k)F(k | k1) (5-38¢)
P(k | k)=P(k |k —1)-K(k)H(k)P(k | k —1) (5-381)

where the output matrix H(k) is derived from Eq. (5-37) by using the current operating point
(vo(k), wo(k)), as defined by a-posteriori state estimates calculated in the preceding correction

phase of the Kalman filter algorithm:

vo (k)= (k=1 k=1), vy (k) = 5k ~1]k~1).

Assuming that the stochastic state perturbations (v, ,v and v,,) and the

v Vyopr »
measurement errors (e, ande, ) are mutually independent, the state covariance matrix Q and

the measurement noise covariance matrix R are defined as:

Q=diaglle, 4, Gy duy]) R=diaglls, 1] (5-39)
where the components of matrix Q corresponds to the variance of the state perturbations and

the components of matrix R correspond to the variance of the measurement noise.
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In general, the Kalman filter algorithm constitutes of two distinct phases that are usually
performed at each time step: prediction and correction (see Chapter 3). However, in this
particular case, the inertial sensors measurements a,,,, and @.,, are sampled with the sampling
rate 7y = 20 ms, while the GPS-based vehicle velocity measurements are sampled at a lower
rate Ty = nTy =1 s (1.e. the GPS measurement update is performed every n = 50 samples of the
faster inertial sensors measurements). Since the process model outlined in Eq. (5-34) can be
classified as a multi-rate system, the Kalman filter-based state estimation methodology for
multi-rate and multi-resolution systems (described in more detail in [61,62]) is utilized. More
precisely, in the case when the GPS measurements are not available the estimator performs
the time-update according to Egs. (5-38d)-(5-38f) where the output matrix H(k) equals zero,
and consequently the Kalman gain matrix K(k) equals zero, as well. The estimator is executed
in the open-loop manner based only on inertial sensor measurements. Namely, the correction
of the a-priori estimates is excluded due to the fact that the needed recent GPS measurements
are unavailable. Nevertheless, F and G matrices are continuously updated in order to keep the

track of the current operating point of the process model.

On the other hand, when the GPS measurements V., and V. are available (at the step nk,
where for a given sample rates of the inertial and GPS sensors n = 50, k=1, 2, ...), the output
matrix H(k) is updated with respect to changes of the operating point (12, VoW, ) Based on the

updated matrix H(k), the estimator gain matrix K(k) and the measurement update are

calculated, and the estimated state variables are corrected in the closed-loop manner.

5.3.1 Observability analysis

In order to examine the feasibility of the proposed EKF-based estimator concept, the
observability analysis has been first conducted for the utilized discrete-time process model

given by Eq. (5-36).
In general, for a linear time-varying discrete-time system state-space model

x(k)=F(k —1)x(k —1)+ Gk - 1)u(k —1)

(5-40)
y(k) = H(k)x(k)
the following observation matrix Oy is defined:
0,=[H HF ... HF'[ (5-41)
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where 7 is the system order. The system (5-40) is observable if the observation matrix Oy has

the number of independent rows equal to the number of the state variables (i.e. rank(Ob ) =n,
[60]).

The particular process state-space model (5-36), used for sideslip angle and inertial sensors
offsets estimator design, has four states (n = 4), two inputs (p = 2), and two outputs (/ = 2).
This is a time-variant linearized MIMO system whose system matrices F, G, and H defined
by Eq. (5-36) are functions of inertial sensors sample rate 7, pre-estimated longitudinal
velocity input #, and system operating point defined by vehicle lateral velocity vy and yaw

angle v (v and y are state variables). The observability matrix Oy is found to be given by:

cosy, UCOSy,—V,siny, 0 0
-siny, —usiny,—v,cosy, 0 0
cosy, ucosy,—v,siny, —T.cosy, v,T, siny,
R -siny, -—udsiny,—v,cosy, T, siny, v, I, cosy,
Ob(Ts’”’Vo’V/o): A . )
cosy, ucosy,—v,siny, —2T cosy, 2v,T, siny,

-siny, -—usiny,—v,cosy, 27T siny, 2v,T,cosy,

cosy, ucosy,—v,siny, —37T cosy, 3v,T,siny,

-siny, -—usiny, —v,cosy, 3T siny, 3v,T, cosy,

The rank of this matrix has been computed by applying the singular value decomposition

(SVD) algorithm within the Matlab Symbolic toolbox™. For the nominal case, and when the

trivial solutions (e.g. zero velocity u# and zero operating point(vo, l//0>) are excluded, the

algorithm computed observation matrix rank (rank(Op) = 4 = n), what indicates that the
considered system is observable. A numerical analysis has also been carried out in order to
identify the conditions, related to the trivial solution, in which the system observability is
compromised. This analysis showed that the system becomes unobservable for zero lateral
velocity (vo = 0, i.e. straight line driving, for which the sideslip angle is also zero). On the
other hand, zero values of the trigonometric functions (obtained for wy = km/2, where k =
0,1,2...) do not affect the observability. Thus, for the zero vehicle heading (y = 0) the

observation matrix rank is still 4 (i.e. the vehicle model remains observable).

5.3.2 Simulation environment
Performance of the proposed EKF-based estimator is analyzed by means of computer

simulation. For that purpose, the simulation environment outlined in Fig. 5.2 is applied. The
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vehicle dynamics variables needed for testing the estimator are generated “off-line” from the
10DOF vehicle dynamics model [23]. This model provides selection of a desired driving
maneuver (e.g. step-steer, double lane change, j-turn, etc.) and setting of specific maneuver-
related parameters (e.g. initial vehicle speed uy, steering wheel angle ¢, etc.). The signals of
vehicle lateral acceleration a, and the yaw rate ., derived from the 10DOF model, along with
a preset sensor parameters (1.e. offsets a, ,yand @ . and measurement noise variances v, and
V), are used for generating the inertial sensors measurements signals a,,,, and @., (EKF
inputs). Within the Kalman filter, the vehicle lateral velocity v, the heading/yaw angle i, the
accelerometer offset a,,,5, and the gyro offset w. . are defined as state variables (see Eq. (5-

36)). The GPS-based vehicle velocity measurements V. and V], are calculated from Eq.

GPs
(5-33) by utilizing the vehicle longitudinal velocity u, lateral velocity v, and yaw angle y
signals obtained from the reference 10DOF model. For this initial testing phase the error
components e; in Eq. (5-33) are neglected. The vehicle longitudinal velocity u, comprised in
the proposed state-space discrete-time process model equation (5-36) and used for design of
the EKF estimator, should be estimated from the ABS wheel speed measurements @y = [@y,
Wfiy Oy, w,]" (see Eq. (5-35) and [49]). However, for the initial verification of the estimator
performance, the reference longitudinal velocity signal u obtained directly from 10DOF

model has been used.

Maneuver

parameters — ®w
: 1 10DOF vehicle p Loy D + w,,
dynamics model ) n " 2 )_
|
l l A 24

4y.off =
@Oz off INS measureme j (m GPS velocity

<>

easurement model
Vg kinematic model

Y
o> VGPSl l Vips
v o
x—>
Extended Kalman Filter 74
States: V, ¥/, d,, o> @, off/—ﬁ—>

| 2. .o/
R of])

Fig. 5.2 lllustration of the EKF-based sideslip angle estimator simulation environment.
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For testing the estimator, two distinct driving maneuvers are used: step-steer maneuver (as
illustrated in Fig. 5.3) representing the conditions of “regular” dynamics after the step steer
change, and double lane change maneuver including emphasized oversteer instability
dynamics (see Fig. 5.4). The step-steer driving maneuver is characterized by the initial vehicle
velocity uy = 20 m/s, and quasi steady-state lateral acceleration and yaw rate of a, = 5 m/s”
and w. = 0.38 rad/s, respectively (see Fig. 5.3a). Even larger amplitudes of these variables
(towards the stability margin) are obtained for double lane change maneuver with the same
initial velocity uo, as shown in Fig. 5.4a. Figures 5.3b and 5.4b show the absolute vehicle

velocity signals measured by GPS receiver, sampled with sample rate of 7, = 1 s, and used as

the estimator inputs.

20

u [m/s]
S

VGPS,N

a [m/sz]

VGPS,E

z
©
)

o, [rad/s]

a)

Fig. 5.3 Step-steer driving maneuver (wy,; = 20 m/s, o5 = 90°): vehicle dynamics variables
derived from the 10DOF model (a) and calculated GPS velocity measurements signals (b).
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Fig. 5.4 Double lane change driving maneuver (u;,; = 20 m/s): vehicle dynamics variables
derived from the 10DOF model (a) and calculated GPS velocity measurements signals (b).
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The simulation results regarding the estimation error analysis presented in the Section 5.4 are
obtained for the sample rate of inertial sensors measurements 75 = 20 ms and the sample rate
of GPS-based velocity measurements 7, = 1s. The sensor offsets are set to the constant values

ay,of = 0.05 m/s” and @0 = 0.006 rad/s, if not stated otherwise.

Initially, the estimator has been tuned and its performance has been analyzed by using the
“idealized” basic planar vehicle model, instead of the 10DOF model, for generating the EKF
input variables:
v=a,6 —o.u
o (5-42)
Y =0,
thus neglecting the impact of roll and pitch dynamics. Since the basic process model (5-42)
corresponds to the model used in the estimator design, the goal of the initial tests is to verify

the design itself. The related simulation results for the step-steer and double lane change

maneuvers defined above are presented in Fig. 5.5. The state and measurement noise

covariance are set to the following values: ¢, = 1, ¢, = 0.3, qaoyr = 10°, Guog = 500, Faps =15

andr,, =9.6 (see Subsection 5.3.1. and Eq. (5-39)).
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Fig. 5.5 Estimated state variables and sideslip angle for the “idealized” case of basic process
model and step steer maneuver (a) and double lane change maneuver (b)

The results clearly indicate that the proposed estimator provides accurate offset estimates a,, o
and .,y with the response time of approximately 10 s. The initial overshoot is larger in gyro
offset estimate than in estimate of the accelerometer offset for both maneuvers. The lateral
velocity estimation accuracy is also very good. Exceptionally, relatively large lateral velocity
estimation errors appear in the initial time interval of the step-steer maneuver. These errors
are related to the low model observability during the zero lateral velocity conditions and still
large errors in estimated sensor offsets. Namely, it appears that the lateral velocity estimation
becomes less sensitive to the observability issues when the sensor offsets are accurately

estimated.
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5.4 Estimation errors analysis and compensation

Various sources of estimation errors has been separately identified and analyzed, by
evaluating the performance of the proposed, basic (i.e. non-adaptive) fusion-based EKF
estimator configuration for the driving maneuvers specified in the former Subsection and the

full 10 DoF vehicle model.

5.4.1 Pre-estimated longitudinal velocity related errors
The vehicle longitudinal velocity u is not measured directly, but it is estimated from the non-

driven, free-rolling wheels rotational speeds according to Eq. (5-35), presuming the constant
tire effective radius r, (cf. Section 4.2). However, the tire effective radius changes with the
wheels normal load (Chapter 4). On the other hand, braking induces large longitudinal slip
that largely affects the accuracy of longitudinal velocity estimation (detailed analysis of
braking-related sideslip estimation errors is given at the end of this Section). In order to be
able to analyze the effect of tire radii variations upon the EKF-based sideslip estimator
accuracy, the tire dynamic effective radius model is integrated within the reference 10DOF

model [49]. The true effective tire radius can be expressed as:

re = rn + §r,st + §r,dyn

(5-43)
where 7, is the nominal tire radius, 0, is the static radius error (e.g. due to tire deflation), and
Or,ayn 15 the dynamic radius error (e.g. due to accelerating/braking, road grade). These tire radii

errors cause an error of the pre-estimated vehicle longitudinal velocity, which is given by:

12 —u a)rl + a)rr
gu = == (51‘,st + é‘r,a'yn )
u 2

(5-44)

The relative and absolute longitudinal velocity pre-estimation errors for a double lane change
maneuver are shown in Fig. 5.6. In the presence of both, static and dynamic tire radius errors
the arithmetic mean of the vehicle velocity pre-estimation relative error for this maneuver
equals 0.3% (blue trace in Fig. 5.6b). However, if the tire radius static error is
compensated/set to zero (0,5 = 0), the velocity estimation error can be significantly reduced

(red trace in Fig. 5.6).
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Fig. 5.6 Longitudinal vehicle velocity estimation errors for double lane change maneuver
with emphasized oversteer: absolute errors (a), relative (b).
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Fig. 5.7 Impact of the inaccuracy of pre-estimated vehicle longitudinal velocity on the
estimator performance with respect to the process state variables (a) and sideslip angle (b)
estimation for double lane change maneuver.

The relatively small vehicle velocity pre-estimation error of only 0.3% can still induce
significant lateral velocity/sideslip angle and sensor offsets estimation errors [14]. Thus the
vehicle longitudinal velocity should be estimated separately by a dedicated kinematic
estimator, in order to enable sufficient accuracy of the velocity pre-estimate signal needed for
superimposed sideslip angle estimator. An initial analysis indicated that the vehicle velocity
pre-estimation errors were predominantly propagated to the final sideslip angle estimation

errors through the process output equation (5-36b) during the measurement update phase.
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Therefore, the process output equation, constituting the GPS velocities measurement model

illustrated in Fig. 5.8, is subject to a more detailed simulation analysis presented below.

vE +
GPS velocity |2~ )—> e(Vps)

model (5-33) | Véps ?_> eWVle)
u, v,y VGPS VGPS

vehide ) ©y [
10DOF vehicle ) Ow, Vehiclevelocity] [GPSvelocity

dynamics model | 7, octimation (5-35) model (5-33)
_ -

R A A&
a Aym - v—.\
yolf —:_ - Simple vehicle

+Y w kinematic model

a)zoff \ (5-31 )-(5-32) /
-+

Fig. 5.8 Block diagram of GPS velocity measurements reference and open-loop
estimation error model.

The reference GPS velocities V5., and V. are obtained from the GPS velocity measurement

model (i.e. Eq. (5-33) whereat the measurement errors e, and e, are set to zero), with the

vehicle dynamics variables u, v, and y obtained directly from the reference 10DOF vehicle
dynamics model. On the other hand, the GPS velocities estimates V[ and V[, are

calculated by using the same GPS velocity measurement model, but this time the estimates of
the vehicle dynamic variables i, v, and 7 are used instead. These open-loop estimates have
been derived by using the simple vehicle kinematic model defined by Egs. (5-31),(5-32), and
(5-35) and utilized by the EKF estimator. The GPS velocity open-loop estimation errors

g(VGiS) and 8(VGA,’,S) represent the outputs of the above model.

Firstly, in order to analyze to which extent the difference between the used vehicle models
(i.e. the reference 10DOF model and the simple kinematic one) induces the open-loop GPS
velocity estimation errors, the sensor offsets and velocity estimation error are set to zero (i.e.
Ay =0, @05 =0, and @ =u ). In this case the GPS velocity estimation errors arise only from
the difference between the reference values of the vehicle lateral velocity and heading angle
(v and ) and the related estimates v, and 7 obtained from the model. These estimation errors
are illustrated in Fig. 5.9b by green dashed line. The said errors are emphasized during
dynamic conditions and are very small in steady-state intervals. In the considered double lane
change maneuver, the GPS velocity estimation errors are in the range of 1-2% of the reference

signals given in Fig. 5.9a.
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Fig. 5.9 Impact of the vehicle longitudinal velocity pre-estimation error on open-loop
estimation accuracy of the vehicle velocity components in inertial coordinate frame: reference
velocities measured by single GPS receiver (a), and GPS velocities absolute estimation errors

in relation to effective tire radii errors (b).
Moreover, the effect of the vehicle velocity pre-estimate errors, related to both static and
dynamic tire effective radius errors, on the accuracy of the GPS velocity estimates is also
shown in Fig. 5.9b (red and blue dashed lines). It is evident that the vehicle velocity pre-

estimate errors due to static tire radii errors have a dominant effect upon the accuracy of the

GPS velocity estimation even during steady-state intervals.

In the next step the inertial sensor offsets, as a dominant source of errors, are included in the
GPS velocity open-loop estimation error model given in Fig. 5.8. The related GPS velocity
estimation errors for the a,,5= - 0.05 m/s? and @-opp = 0.006 rad/s are shown in Fig. 5.10a for
the same maneuver from Fig. 5.9a. When compared with the inertial sensor offsets effect, the
impact of the vehicle longitudinal velocity pre-estimation errors on the GPS velocities open-
loop estimates can be neglected. Furthermore, the open-loop sideslip angle estimates shown in
Fig. 5.10b have emphasized drift and quickly accumulate large errors. The impact of the tire
effective radii-related longitudinal velocity pre-estimation errors on the open-loop sideslip

angle estimation accuracy is minor (i.e. sensor offset effect is much more emphasized).
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Fig. 5.10 Open-loop GPS velocities estimation errors (a) and open-loop vehicle sideslip
angle estimates (b) (inertial sensor measurement offsets included).
Finally, the impact of both inertial sensors offsets and longitudinal velocity pre-estimation
errors on the performance of the proposed EKF sideslip angle estimator is analyzed (closed-
loop estimation). The estimates of the sideslip angle and process state variables for the double
lane change maneuver without any a-priori information of the sensor offsets (i.e. initial states

of all state variables are set to zero value), are shown in Fig. 5.11.
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Fig. 5.11 Illustration of estimation errors due to the tire radii-related longitudinal velocity
inaccuracies and inertial sensor offsets: process model state estimates (a) and vehicle sideslip
angle estimate (b) (no a-priori knowledge on state variables including offsets).

5.4.2 GPS velocity measurements related errors
The GPS velocity measurement errors, alike the longitudinal velocity pre-estimation errors,

propagate to the sideslip angle estimate through the process model output equation (5-34b)
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and they result in an increased a-priori estimation errors );/(k | k — 1), defined by Eq. (5-38c).

In order to simulate these effects, the GPS velocity errors are modeled as Gaussian random
variables with the standard deviation of 5 cm/s (correspond to typical accuracy of low cost
receivers [16]). The corresponding sideslip angle estimates for the double lane change and
double step steer maneuvers are shown in Fig. 5.12. These results are obtained for the non-
adaptive estimator with the slow EKF tuning, zero static tire radii variations-related
longitudinal velocity pre-estimation errors, and accurate a-priori information of the inertial
sensor offsets. They indicate that the GPS velocity measurement errors can induce sideslip

angle estimation errors up to 3 degrees.
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Fig. 5.12 Impact of GPS velocities random errors on accuracy of sideslip angle estimation for
double lane change maneuver (a) and double step steer maneuver (b).

Another source of the sideslip angle estimation errors is related to GPS velocity measurement
latency. Namely, the GPS receivers measure the velocity by internal averaging of the velocity
data calculated at a higher rate within the receiver sample time period. This gives a theoretical
velocity-measurement latency of a half of the sample time period [61]. Furthermore, the finite
time required for processing and transmission of the receiver data may contribute to the total

latency [61,62].

In order to emulate this GPS measurement latency, the reference GPS velocity signals
obtained from Eq. (5-33) at a higher sample rate of 1/7; = 50Hz are filtered by an moving
average filter, thus calculating the arithmetic mean of the reference signal on the 1 Hz basic
sample rate. It has been found out that the measurement latency is manifested in a
measurement delay of 7,2 = 0.5 s and certain response damping (e.g. the effect of the

measurement latency upon the GPS velocity signals for a double lane change maneuver is
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illustrated in Fig. 5.13). This latency in the GPS measurement can apparently represent a
major source of the sideslip estimation errors, because it causes large velocity measurement

dynamic errors.

Reference
Measurement

VGPS,N

VGPS,E

Fig. 5.13 Effect of the GPS velocity measurement latency for the double lane change
maneuver.

The GPS latency-related estimation errors for the double lane change maneuver are given by
the red trace line in Fig. 5.14. As anticipated, the estimation errors are unacceptably high
during transient conditions, when the GPS latency errors are emphasized. These large
estimation errors of sideslip angle are caused by inaccurate measurement update and related
correction relying on faulty a-priori prediction error (5-38c). Namely, the current
measurements y(k) represent, in fact, a filtered and delayed copy of the original measurements

and do not match the current a-priori output estimate §'(k | k—l). Thus, in order to

compensate for the GPS latency errors, the a-priori output estimates should be synchronized
with the measurements. Presuming that the GPS measurement latency of one half of the
sample time is time invariant, the same moving averaging filter as for the GPS velocity
measurements, should be applied to the output estimates. Thus, the GPS measurements and
output estimates are effectively synchronized and correct a-priori prediction error can be

calculated as:

Flk e —=1)=y(k)- (k| k-1) (5-45)
were §(k|k—1):lzn:§r(k—l|k—l—l) and n=T, /T, =50. The efficiency of such
n o

compensation action is illustrated in Fig. 5.14 (green trace line).
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Fig. 5.14 Impact of GPS velocity measurement latency on sideslip angle estimation without
and with latency compensation action applied.

5.4.3 Errors related to roll and pitch dynamics
In order to determine the impact of unmodeled roll and pitch dynamics on the estimator

accuracy, the more realistic 10DOF reference vehicle model [23] is used instead of the simple
planar model (5-42) (see Fig. 5.2). The related simulation results for step steer and double
lane change driving maneuvers and two sets of state covariance components (i.e. the Kalman

filter tuning settings) are shown in Fig. 5.15.
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Fig. 5.15 Impact of unmodeled vehicle roll and pitch dynamics on estimation accuracy of the
process state variables and sideslip angle for step steer maneuver (a)
and double lane change maneuver (b).

The vehicle lateral velocity/sideslip angle estimation accuracy is, unlike the vehicle heading
estimate, reduced compared with the “idealized” case in Fig. 5.5. This holds especially for the
step-steer maneuver (Fig. 5.15a) characterized by very small lateral velocities. From the
double lane change maneuver results (Fig. 5.15b) it is evident that the lateral velocity/sideslip
angle estimates are more accurate during transient than steady-state conditions. Moreover,
when comparing the two maneuvers, it can be noted that the higher estimation accuracy is
achieved for larger values of the lateral velocity, because in such cases the ratio of the lateral
and longitudinal velocities is conveniently larger. The estimation accuracy of the sensor
offsets is also affected by the roll and pitch related disturbances, where the gyro offset
estimation is more critical. However, the sensor offsets are typically slowly varying with

temperature and aging. Thus, by increasing the offsets estimation equivalent time constants
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the impact of roll and pitch disturbance on the offsets estimation accuracy should be
substantially decreased. This is done by decreasing the corresponding (offset-related) state
covariance matrix coefficients. As shown in Fig. 5.15, by decreasing of the offsets covariance
coefficients g, and guop the oscillations in estimated offsets signals are reduced, especially
for the double lane change maneuver. However, for the double lane change maneuver the
gyro offset estimate signal is still oscillatory, thus requiring further decrease of the
corresponding covariance parameter g, and corresponding slow-down the offset estimate

response.

5.4.4 Braking related errors

Braking is another source of estimation errors, which are caused by inaccuracy of longitudinal
velocity pre-estimate # due to a large longitudinal slip. The impact of braking on the
accuracy of sideslip angle estimation is illustrated in Fig. 5.16 on an example of a braking in
turn maneuver with the initial velocity uy = 25 m/s, steering wheel angle J; = 30°, and braking
torque 7, = 300 Nm per wheel initiated at # = 15 s. The estimator performance is analyzed for
the cases of dynamic (red trace) and static (blue trace) tire radii variations. The offsets are
taken to be initially known. During a pure cornering over a period (¢t = 2+15s in Fig 5.16), the
longitudinal velocity pre-estimation error due to dynamic radii variations is less then 0.1%,
while for the static radii error the estimation error is approximately 0.4%. However, the errors
are significantly increased during braking, which results in significant sideslip angle

estimation inaccuracy, as shown by solid lines in Fig. 5.16b.

-12 ‘ I I I I I I L
b 0 2 4 6 8 10 12 14 1
t [s]
Fig. 5.16 Braking-related errors of pre-estimated longitudinal velocity (a) and corresponding
sideslip angle estimator responses (b).
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Here, the compensation of static tire radii variations-related errors by itself would not provide

significant gain under the braking conditions. On the other hand, it is difficult to compensate

102



Kinematic GPS/INS fusion-based sideslip angle estimation

for the braking-related estimation errors, because the exact braking force and related tire slip
could not be reliably determined due to uncertainties of the brake model and longitudinal tire
static curve. Therefore, during the temporary braking intervals, the sideslip angle should be
estimated in the open-loop mode using inertial sensors measurements only, without
performing the GPS-based measurement correction. More precisely, the open-loop estimation
mode can be activated by setting the observation matrix H to null matrix (the Kalman gain
matrix K is also null matrix), upon detection of pressed braking pedal, thus making the
measurement correction inactive. The sideslip angle estimates obtained by implementing such
an intervention are illustrated by dashed traces in Fig. 5.16b. These results indicate that the

open-loop estimation, applied during braking, eliminates the braking-related estimation errors.

5.4.5 Road bank related errors

The road bank angle ¢ also represents a major source of estimation errors, because the effect
of the gravity acceleration component gsing ~ g¢ (see Eq. (5-9)) measured by the lateral
accelerometer has not been included in the process model given by Eq. (5-34). Thus, the road

bank represents an unmodeled disturbance for the estimation of the sideslip angle 5.

The road bank impact has been analyzed for the step-steer maneuver (steering wheel angle J;
= 50° and initial velocity uo = 20m/s) on the banked road with stepwise bank angle changes
up to £15° (see black line trace in Fig. 5.18a). The corresponding sideslip estimate is shown
in Figure 5.18b (red dashed line), and it is obtained for accurate vehicle longitudinal velocity
pre-estimate and correct a-priori information on inertial sensor offsets. According to these
results, the road bank causes unacceptably high sawtooth-like oscillations in the estimated

signal. These oscillations are directly induced by a large gravity acceleration component

*

acting as additional sensor offset a, , =a,

+ gsin¢g. Namely, the difference between the

estimated accelerometer offset and the actual value a,,; causes a drift in the sideslip angle
estimate during the open-loop estimation between the two consecutive GPS velocity

measurements.

In order to reduce the road bank impact on the estimator accuracy, the gravity component,
measured by the lateral accelerometer, should be estimated. Such estimation may rely on the

following expression:

A
A

ay,grav = g¢ = ay,m - ay,off - V - (a)z,m - a)z,off )u (5_46)
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which is obtained from Eq. (5-31) after neglecting the measurement noise component v,.
However, in order to avoid additional closed loops in sideslip estimator and potential stability
issues, the above gravity estimate equation is simplified and only the inputs of the original
EKF estimator are used. The sensor offsets are relatively small when compared to the gravity
acceleration component even for small bank angles, and also v is considered to be small for
steady-state driving conditions. In addition, the contribution of dynamic component v to the
estimated, relatively slow gravity acceleration component can be effectively filtered by
applying a low pass filter. These approximations result in the simple road bank-related
acceleration term estimator given by the following expression and illustrated in Fig. 5.17, and

used for compensation of the related sideslip angle estimation errors:

a}’,gmv = GLP (S) (ay,m - a)z,mu) (5-47)
ay,m + C &y,gi‘av + ay,m
e
o -
22y LP - filter
1) X
u__y

Fig. 5.17 Elimination of road bank-related gravity acceleration component from
accelerometer measurement.

The results of the estimated road bank angle ¢3= A, ora / g for the considered step-steer

maneuver on a banked road are given in Fig. 5.18a (red dashed line). The observed bank
estimation error, of approximately 1 degree is primarily induced as a result of neglecting the

oo u acceleration component.

The gravity acceleration component estimate (5-47) is subtracted from the original

accelerometer measurement a,,,, as illustrated in Fig. 5.17 and a; ,

. 1s then used by the
sideslip angle estimator instead of the raw measurement. According to the simulation results
shown in Fig. 5.18b, this compensation method effectively suppresses the drift-like
oscillations in the sideslip estimation signals and confines the estimation error within 1.5 deg

for the considered, quite excessive road bank disturbance of 5-15 degrees.
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Fig. 5.18 Illustration of road bank-related sideslip estimation errors and related
compensation algorithm: road bank angle estimate (a) and sideslip angle estimate (b).

Alternatively, the road bank angle may be estimated by using a dedicated estimator by
utilizing the measurements of additional sensors (e.g. the roll rate gyro and/or vertical
accelerometer) or the vehicle dynamics model and standard set of vehicle dynamics sensors,
as documented in [30,48]. In that case the estimated road bank/roll angle could be integrated
in the state-space process model in Eq. (5-34) and added as additional input of the EKF-based

sideslip estimator in order to account for the superimposed gravity acceleration component.

5.5 Design of the adaptive estimator

The proposed basic EKF estimator design has been extended by implementing an adaptation
algorithm in order to provide a good trade-off between fast convergence of inertial sensors
offset estimates and a low level of their steady-state perturbations. The adaptation algorithm is
implemented through a change of the elements of state covariance matrix Q. During the
highly dynamic driving maneuvers the estimator should be made slower in order to decrease
perturbations in sensor offsets estimates and suppress the related sideslip estimation errors.
On the other hand, the faster tuning is more appropriate for quasi-steady state maneuvers, in
order to speed up the convergence of the sensor offsets estimates under the conditions of
decreased estimator excitation (see Fig. 5.19). Consequently, the two sets of state covariance

parameters are predefined: Qp for slow EKF tuning and Qs for fast EKF tuning.
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Fig. 5.19 Illustration of impact of state covariance matrix tuning on sensor offset estimation.

Fig. 5.20 shows a simple adaptation procedure for selecting the appropriate covariance matrix
based on the vehicle dynamics conditions. The required information about the vehicle
dynamics conditions are obtained by monitoring the lateral accelerometer measurement ay, ,,
and the estimate of v. This estimate is derived from the EKF a-priori and a-posteriori

estimates of the vehicle lateral velocity, according to:

v Bk k=1 =Pk =1k -
3(r) = ( 1) T( 1k-1)

N

(5-48)

where T is the inertial sensors measurement sampling rate.

Ven

v(k)

NN

TOII
Timer_1 C adapt
a v,th —>
ay (k)
y,m
=\ [P Ty
Timer 2

Fig. 5.20 Estimator adaptation algorithm.

The basic idea of the adaptation procedure is to set the flag c,ay if the absolute value of
estimated lateral velocity derivative \A/(k) 1s higher than some threshold value v, for a period

longer than a preset time 7,,. Namely, the lateral velocity time derivative v represents a good
indicator of dynamic driving conditions (i.e. it can be quite large during transients, while it is

approximately zero during quasi steady-state conditions). On the other hand, cuqqy 1s reset if

both ‘\;(k)‘ and ‘ay,m (k)‘ are less than their threshold values v, and a ,, respectively, for a

Voth >
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period longer than 7, The additional condition related to the lateral acceleration a,, , is used

in order to prevent resetting the flag cuuy in the case of oversteer conditions that are

characterized by relatively low v (compared to, e.g. step steer maneuvers) but high a, .

Hence, in transients when cuiqr = TRUE, the covariance matrix Qp is selected to limit the
perturbations in estimated signals, while under the quasi-steady-state conditions, when Cadap =
FALSE, the Qs is utilized to obtain faster convergence of estimates towards true values. The
adaptation procedure should abruptly detect an extensive dynamic behavior to timely slow
down the estimator, while switching to the steady-state mode should be made more
conservative in order to avoid chattering in adaptation. Thus, the timers parameters should be

set such that Ty, << Tyt

5.5.1 Evaluation of the adaptive estimator

In order to illustrate the effectiveness of the proposed adaptive estimation approach, the
sideslip angle estimate of the adaptive EKF estimator has been compared to the ones obtained
for the slow and fast-tuning non-adaptive case. The estimation results are shown in Fig. 5.21
for double lane change and double step-steer maneuvers, and the following tuning parameters:

Ton= 60ms, Toir= 400ms, v, = 0.2 m/sz, and a,; = 6 m/s>. The response of the adaptation flag

trace Cudap: 1S Included in the plots. The results are obtained for the case of no a-priori
information on sensor offsets and with only dynamic tire radii variations-related velocity pre-

estimation errors taken into account.
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Fig. 5.21 Comparison of sideslip estimation performance without and with estimator
adaptation applied: for double lane change maneuver (a) and double step steer maneuver (b).

The comparative responses indicate that the adaptive estimate represents a good trade-of
between the two non-adaptive estimates. Namely, the adaptive estimate provides a faster
convergence of the estimated sideslip values than the slow non-adaptive EKF. On the other
hand the steady-state error after the emphasized transient (e.g. for 15s <¢ < 20s in Fig. 5.21a)
is smaller than with the fast non-adaptive EKF estimator. The estimation errors in the initial

period are due to initially inaccurate offset estimates.

The final results, given in Fig. 5.22, are obtained for the fully tuned and compensated adaptive
sideslip estimator in the presence of longitudinal pre-estimation errors (due to the dynamic
tire effective radii discrepancies) while presuming accurate a-priori information on inertial
sensor offsets (i.e. the estimator has been active long enough to converge to the true offset
values). The estimator performance is tested for the double lane change maneuver and double

step-steer maneuver on a flat road.
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Fig. 5.22 Final results of tuned adaptive EKF-based sideslip angle estimator performance for
double lane change maneuver (a) and double step steer maneuver (b).

The estimator provides reasonably accurate sideslip angle estimates (the error is less than 1,5°
on a large sideslip angle span of +20°). Generally, the estimator has been found to perform
better in highly dynamic maneuvers with relatively short intervals of the steady-state driving
conditions. Namely, the accumulated errors are more difficult to correct during the steady-
state conditions (especially during straight line driving), because of the lack of process model

excitation.

5.6 Summary for GPS/INS kinematic approach

An adaptive EKF-based sideslip angle estimator has been proposed. It combines the low
sampling rate GPS-based vehicle velocity measurements with the high sampling rate inertial
sensors measurements (lateral acceleration and yaw rate), in order to compensate for the drift-

like sideslip angle estimation errors caused by the inertial sensor offsets.

The simulation analysis has indicated that the estimator can be rather sensitive to small errors
of pre-estimated longitudinal vehicle velocity, caused by the static and dynamic tire radii
variations. Dominant estimation errors related to static tire radii variation can be effectively
compensated during straight driving by comparing the GPS velocity and wheel speeds

measurements. The remaining errors related to dynamic tire radii variations are relatively
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small. Further refinements of the longitudinal velocity pre-estimation may include the
dynamic errors compensation proposed in Chapter 4, as well. On the other hand, braking can
cause large sideslip angle estimation errors, because of relatively large longitudinal velocity
pre-estimation errors caused by the tire longitudinal slip. In order to compensate for these
errors, the sideslip is estimated in the open-loop mode during braking intervals, because of

uncertainty of slip estimation.

GPS measurement latency represents another source of the sideslip estimation errors, because
it causes large transient velocity measurement errors. However, presuming that this latency is
constant it can be compensated by introducing the same latency (averaging) in the EKF

prediction error calculation.

Road bank represents a potentially large unmodeled disturbance that may cause significant
sideslip estimation errors. Namely, the road bank induces high drift-like behavior of the
sideslip estimate, related to the additional accelerometer offset caused by gravity acceleration
component. In order to reduce the estimation errors, two compensation methods have been
suggested. First method modifies the EKF tuning (speeds up the accelerometer offset
estimation) in order to account for the additional offset. However, this method becomes
ineffective in the case of averaging of the EKF output estimates needed for compensation of
the GPS measurement latency-related errors. The second compensation approach, which is
based on estimation of the bank-related gravity acceleration component, has been proven to

be rather effective.

The designed adaptation algorithm modifies the state covariance matrix in order to account
for the changes in the vehicle dynamics conditions. More specifically, two sets of state
variables covariance parameters are used; one for quasi-steady-state conditions and other for
intense dynamic behavior. The sensor offset estimation is made faster during the steady-state
conditions and slower during transients. Adaptation relies on the measured lateral acceleration
and estimated time derivative of the lateral velocity signals. This procedure enables adjusting
optimal estimator performance with respect to estimator response time and damping of
oscillations in the estimated sensor offsets and consequently the magnitude of errors in

sideslip angle estimate.

Finally, the performance of fully tuned, adaptive EKF-based estimator has been tested for the
double lane change and double step-steer maneuvers. The simulation results have shown that
the sideslip estimation error of less than approximately 2 deg is achievable for a wide range of

non-braking operating conditions, provided that the static tire radii, bank, and GPS
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measurement latency errors are accurately pre-compensated and the offset estimates transients

are settled.
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6 Sideslip estimator based on
nonlinear vehicle dynamics and
stochastic tire models

6.1 Background

The sideslip angle estimator based on a nonlinear vehicle dynamics model that utilizes
stochastic, random walk-type models of the tire forces has been initially proposed in [55]. The
estimator has then been extended, refined, and validated as described in detail hereinafter.
Such approach eliminates sensitivity of the sideslip angle estimation to uncertainties of the
deterministic tire model parameters, and makes the laborious and costly tire model
identification unnecessary [18]. The proposed estimator has been verified through off-line
processing of the experimental data recorded on a test vehicle, equipped with a high-
performance inertial measurement unit (IMU), during various realistic driving maneuvers

performed on low-p and high-u surfaces (e.g. snow, ice, concrete surfaces).

The estimator performance has been first analyzed for the case of utilizing a high-precision
inertial measurement unit with two antenna GPS receiver, in order to verify the proof of
concept. Later, the deterioration of the estimator performance has been analyzed for the case
of utilizing only the standard set of vehicle dynamics sensors. The main sources of the
estimation errors have been identified and adequate error compensation methods have been
proposed, when applicable. In order to obtain more accurate estimates, the tuning of the state
covariance matrix has been conducted and analyzed, and finally an adaptive extended Kalman

filter-based estimator configuration has been designed.

6.2 Basic estimation concept

The single-track nonlinear vehicle dynamics model with five degrees of freedom (see Chapter
2, Fig. 2.3) has been utilized as a basis for the design of sideslip angle estimator. This vehicle

dynamics model is defined by the following expressions:

u= l[Fxf cosd —F, sino+ Fx,]—i- Vo, (6-1)
m ;
v:%[F}f coso+ F, sin5+Fyr]—ua)z (6-2)
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0, = Ii (£, cos 5+ F,, sin5)-cF, | (6-3)
oy =[Py -7, (6-4)
wa,r = L Fxrrw - z-br] (6_5)

where u and v are the longitudinal and lateral velocities, respectively, w; is the yaw rate, w,, s
and w,,, are the front and rear rotational wheel speeds, o is the front wheel steering angle, b
and ¢ denote distances of the front and rear axles from the vehicle CoG, respectively, 7, and
1,, are the wheel radius and the wheel moment of inertia, 7,y and 7, are the front and rear
braking torques (see Fig. 2.3). The tire forces Fy, Fy,., Fy; and F), are modeled as first-order

random walk-type stochastic variables.

The state vector x of the continuous-time state-space model representation (Eq. (6-6)) of the
utilized 5SDoF vehicle dynamic model (6-1) to (6-5), is augmented with four additional state
variables corresponding to the front and rear axles lumped tire forces.
X = ®(x) + Bu+ Wo
(6-6)
y=Cx+e
The input vector u comprises the front and rear wheels braking torques, and the output vector

y comprises the measurements of yaw rate, front and rear wheel speeds, lateral and

longitudinal accelerations and vehicle longitudinal velocity. The input vector u, the state

T
5

vector X, and the measurement vector 'y, are defined as: u=[rbf rbr]

7
x=[u v o, o, o, F, F_ F, Fyr],andyz[a)z 1)

w, f w,r X ¥y

The input and output matrices read:

0 01 00 0 0 0 0

. 7 0 0010 0 0 0 0

0 00 A 0 0O0O0O 0 00 01 0 0 0 0
B-= W | ,C=l0 00 0 0 coso 1 —sind 0
000 O A 0 00O .m§ m m5 i

" 00000 X2 o =22 _

m m m
B o 0 0 0 0]

Furthermore, the state noise matrix is equal to unit matrix (W=1,,), and front wheel

steering angle o has been considered as a time variant model parameter in the state transition
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function ®(x) and output matrix C, updated to an instantaneous value of the steering angle

measurement at each time step #.

Note that the model nonlinearities reside only in the state equation, more precisely in Egs. (6-
1) and (6-2) through the terms vo. and uw., while the output equation (i.e. output matrix C) is
linear function of the state variables. Therefore, in order to implement the Kalman filter, the
state-space model nonlinear state transition function ®(x) needs to be linearized around the
operating point (uo, Vor ®.0r) at each time step # in order to derive the state transition
matrix A:

_ 00(x)

A
k X=X

(6-7)

The observability of the linearized state-space model (6-6) has been tested by means of

algebraic analysis of the observability matrix O, = [C CA CA® -~ CA™' ]T and by

calculating its rank [51]. This analysis has shown that the considered model becomes
unobservable in the case of near zero yaw rate and lateral acceleration (i.e. in straight driving
conditions). However, in these conditions the sideslip angle also equals zero, so that the

estimator should be switched off in order to prevent the estimation error build-up.

The discrete-time vehicle dynamics model, needed for implementation of EKF-based
estimator, is obtained from continuous-time model given by Eq. (6-6) after applying Z-

transform based upon the Zero-Order-Hold (ZOH) method:

x(k)=F(k-Dx(k-1)+G(k—-Du(k-1)+Q(k-1Dv(k—-1)
(6-8)
y(k) = H(k)x(k) + e(k)
where the discrete-time model matrices have been derived numerically from the following

approximate expressions [38]:

F=¢"" ~1+AT,, GBT,, Q~ WT, and H=C.

Consequently the discrete model matrices read:
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1 To.) Tvk) 0 0 T coso(k) I, T sind(k) 0
'm m m
T o.k) | “Tu(k) 0 0 T, sino(k) 0 T, cosd(k) T,
m m m
0 0 1 0 0 aT, sino(k) 0 al cosd(k) —-T,b
F(k) = I I, I,
0 0 0 10 LA 0 0 0
IW
0 0 0 01 0 _f—rw 0 0
L 04)(5 I4x4 ]
T
000 —IT—S 0 0000
G= " T ’Q:T;I9x9
000 0O —= 0000
IW
[0 01 00 0 0 0 0]
00010 0 0 0 0
000 0 1 0 0 0 0
HK)=|0 0 0 0 0 coso(k) 1 —sind(k) 0
. m m m
000 0o Smok) , cosolk) 1
m m m
10000 0 0 0 0
The Kalman filter equations in this particular case read (cf. Egs. (3-26) to (3-31)):
x(k | k=1) =f(%(k -1k =1))+ G(k —Du(k —1) (6-9)
Pk |k-1)=F(k-D)Pk -1 k-DF (k-1)+ QQ(k - )Q" (6-10)
Y0k | k=1) = y(k)—h(X(k | k1)) (6-11)
K(k)=(P(k | k- DH (b)) [H (k)P (k | k - DH (k) + R(K)] (6-12)
R(k | k) =x(k | k=) + K F(k | k-1) (6-13)
P(k | k) =Pk | k—1)-K(k)H(k)P(k | k1) (6-14)

Assuming that the stochastic state perturbations and the measurement errors are mutually
independent, the state covariance matrix Q and the measurement noise covariance matrix R

are defined as:

Q=diag([qu 9 9% Yoy Qow 9ry 9re ey qpyr])
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R:dlag([’”az ra]w Fowr  Tax ray ru])

where the components of matrix Q correspond to the variance of the state perturbations and

the components of matrix R correspond to the variance of the measurement noise.

The sideslip angle estimate has been derived by using the estimated vehicle lateral and
longitudinal velocities (i.e. the elements of the a-posteriori updates of the state vector

estimate), according to the following expression:

<>

,é(k) = atan(ﬁgi : l}z;] (6-15)

6.3 Simulation environment

Performance of the proposed EKF-based sideslip angle estimator is first analyzed by means of
computer simulation. For that purpose, the simulation framework outlined in Fig. 6.1 is
applied, based on the 10DoF vehicle dynamics model [4], implemented in Matlab
Simulink™. This model enables selection of different driving maneuvers and setting of
relevant maneuver parameters in order to generate the reference vehicle dynamics signals and
inputs for the single-track SDoF model used for estimation (i.e. front wheel steering angle o
and braking torques T, :[be T, ]T for front and rear axles. Initially, the 5DoF model
outputs have been used as measurements signals y for the EKF estimator, as illustrated in Fig.
6.1, in order to test its nominal performance and emphasize the difference between the

underlying SDoF and referent 10DoF vehicle dynamics model. The presented simulation

results correspond to the high-mu conditions (« = 1).

Maneuver Model states: u, v, w, p. q. 1, @, ,
parameters
— 10DOF vehicle !
1, —»] dynamics model Yij
Inputs (u) ol T, | Model states: u. v, 7, Dy Oy,
5DOF vehicle
dynamics model
(single track)
Measurements (y)
(Y‘Tb‘! H 7 . a..a, .o f,a);:
Extended B

v
» atan— —>

Kalman Filter 0

Fig. 6.1 lllustration of the EKF estimator simulation environment.
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Typical simulation results for a double step-steer and braking in turn maneuvers are presented
in Fig. 6.2a and Fig. 6.2b, respectively. The double step steer maneuver is characterized by a
high peak lateral acceleration of 8.6 m/s’, the initial velocity of 72 kph, and no braking action.
Braking in a turn maneuver is carried out for the initial velocity of 90 kph, the braking torques
of 300Nm per wheel, and the steering wheel amplitude of 28 deg, characterized by the peak
lateral acceleration of 4.2 m/s* and small sideslip angle values. The sideslip angle estimate has
been compared with the actual outputs of the underlying SDoF model and the true reference
yielded from the 10DoF vehicle dynamics model. Based on the simulation result in Fig. 6.2, it
can be concluded that the estimate coincide well with the reduced dynamics model output
while discrepancies between the estimate and 10DoF reference are clearly the result of an

unmodeled roll and pitch dynamics.
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Fig. 6.2 Simulation results of the sideslip angle estimation for double step steer maneuver (a)
and braking in a turn maneuver (b).

Impact of the state covariance matrix Q tuning on the convergence of the Kalman filter
sideslip angle residuals (i.e. the estimation errors) are illustrated in Fig. 6.3 for the step-steer
maneuver with the following parameters: u = 0.6, uy = 90kph, and Adsy = 80 deg (index SW
indicates the steering wheel). The large initial sideslip angle estimation error has been
generated by setting the faulty, nonzero initial value of the lateral velocity state variable,
while the estimates of the other state variables have been initialized to their true values. The
simulation results indicate that the convergence rate of the sideslip angle estimator is
primarily influenced by the quality of excitation [60] (i.e. in conditions of high excitation of
the lateral vehicle dynamics, ¢ > 3s, a fast convergence of the estimation residuals is observed)
and state covariance matrix tuning (i.e. higher convergence rates are obtained for larger values
of individual elements of the Q matrix, but at the cost of increasing the noise in the estimation
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signal, not included in this simulation). Based on this analysis, the nominal setting (10g,0) of
the state covariance matrix Q has been set for further analysis and experimental validation of

estimator performance.

3 [ded]

ﬂ err [deg]

ﬂ e [deg]
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Fig. 6.3 lllustration of the impact of the state covariance matrix tuning on the convergence of
the estimation errors: reference sideslip angle (a), estimation errors vs. initial condition offset
error magnitude for g, (b), and estimation errors for different covariance matrix settings (c).

6.4 Experimental results for high-performance IMU measurements

The estimator performance has been verified by running the estimation algorithm oft-line, on
a set of experimental data obtained from a rear-wheel-drive Jaguar S-type test vehicle
equipped with the Oxford Technical Solutions RT3003 measurement unit (the specifications
are given in the Appendix B). The estimator performance has been tested for various driving
maneuvers (e.g. double lane change, slalom, J-turn, steady cornering) carried out during the
winter tests on low-p surfaces (mostly concrete flat road covered with packed snow) and
relevant maneuvers on dry asphalt. The sample time of the experimental data was 50ms or

10ms depending on the driving maneuvers.

The results analyzed herein and shown in Figs. 6.4 to 6.7, are obtained by using high accuracy
vehicle dynamics measurements obtained from the RT3003 unit instead of using the
equivalent signals from standard vehicle dynamics sensors. More specifically, the signals

used for testing the proposed estimator include: the lateral and longitudinal acceleration,
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lateral and longitudinal velocity, yaw rate, and sideslip angle measurements obtained from the
RT3003 unit, and data acquired directly from the vehicle CAN bus system such as front wheel
steering angle o, front and rear wheel speeds, front and rear braking torques (7, and 7, ,
calculated based on the brake caliper pressure measurements). The simulation results have
been obtained for fixed settings of the state and measurement covariance matrices, Q and R,

respectively.

Since the tire forces are not measured on the test vehicle, and in order to analyze the accuracy
of the simultaneous lateral tire force estimation, which is vital for the later cornering stiffness
estimation (addressed in more detail in Chapter 7), the reference values of the front and rear
tire lateral forces F), and F), have been reconstructed from the available measurements,

according to the following expressions [61]:

cma, +1.0,

s o (6-16a)
(b+c)coso
bma, -1 o,

= (6-16b)

b+c

where the above expression for F), is obtained by combining Eqgs. (6-2) and (6-3), while the
expression for F,is obtained by inserting thus derived rear lateral force F,, back into Eq. (6-
2) and neglecting the longitudinal tire force component Fysino. Note that the tire force
reconstruction approach by using (6-16) requires the yaw rate derivative signal, which would
make it ineffective in on-line applications due to the noise sensitivity. Also, in the presence of
significant braking or accelerating actions in curves, the assumption of small Fysino
component would not hold and therefore Eq. (6-16a) would no longer be valid (i.e. potentially

large errors cannot be neglected).

Moreover, an algebraic analysis of the accuracy of sideslip angle calculation according to Eq.
(6-15) related to the accuracy of the longitudinal and lateral vehicle velocities (i.e. the two
essential state variables of the underlying vehicle dynamics model) measurements or

estimates has been carried out by considering the following sideslip error models:

~

S, =atan

-8 (6-17a)

~

u+u

v+

B =atan’" Y — 3. (6-17b)

u
For the case of constant longitudinal velocity error # =const. For this analysis let the

u = 0.7m/s (or 2.5 kph), then according to Eq. (6-17) the theoretical sideslip angle calculation
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relative and absolute error margin 5, =f (v,ul.) can be determined for different operating

points (u; = [15 10 5 4 3] m/s) as illustrated in Fig. 6.4.
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Fig. 6.4 The absolute (a) and relative (b) sideslip angle errors due to the constant error of the
vehicle longitudinal velocity vs. lateral velocity (sideslip angle) magnitude.

In general, the absolute and relative errors in sideslip angle reconstruction, related to the

constant error of vehicle longitudinal velocity signal, increase as the vehicle speed decreases.

The relative error increase is more emphasized if the sideslip angles are small. Consequently,

the calculation of the sideslip angle by using the Eq. (6-15) becomes rather sensitive to a

vehicle velocity measurement or estimation errors when the vehicle velocity is small (the

impact of the vehicle longitudinal velocity measurement resolution becomes significant). In

such case the performance of the estimator is limited by numerical constraints and cannot be

improved by the estimator tuning and therefore the estimation should be discarded as

unreliable. However, since the sideslip angle remains small (near zero) in such conditions,

and the vehicle handling stability is not likely to be compromised at such small velocities, the

sideslip angle estimation is not relevant (the ESP is held inactive).

Initial analysis of the estimator performance (i.e. proof of concept determination) has been

carried out by running the estimator offline on a set of prerecorded experimental data from an

instrumented test vehicle utilizing the high precision inertial unit measurements for

characteristic driving maneuvers on a low-mu road. For the double lane change maneuver in

Fig. 6.5 the peak sideslip angle estimation error is approximately 0.5 deg (i.e. 5-10% of the

instantaneous sideslip angle values). Apart from the sideslip angle estimation, this estimator

also provides the tire forces estimates (i.e. lateral and longitudinal tire forces of the single
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track model). The estimates of the front and rear lateral tire forces (F,r and F),) concur well
with the reference values, calculated from the available measurements according to Eq. (6-
16). At the same time, these estimates are characterized by much lower noise content (i.e. the

estimator effectively filters the measurement noise inherent to force reconstruction approach).

Fig. 6.6 illustrates the estimator performance for driving on a circular track at the velocity of
65kph. This maneuver is characterized with roughly constant lateral acceleration and yaw rate

(a, =3.5 m/s” and r ~ 10 °/s) and the peak sideslip angle in the range from 4 to 6 deg. The

overall estimation errors are small, except at the beginning and end of the experiment when
they increase. Namely, at the start of the maneuver the estimation error of approximately 1
deg (Fig. 6.6) is caused by inaccurate initial conditions of the state vector estimate (cf. Fig
6.3), and this initial error has been eliminated after few seconds in accordance to the EKF
convergence dynamics. On the other hand, the increased estimation errors at the end of the
maneuver (100-110s interval in Fig. 6.6) are related to the very small vehicle speed and near
zero lateral velocity at which the vehicle dynamics model becomes unobservable and p-
estimation ineffective. Under these conditions (i.e. vehicle speed under 5 m/s and near zero
yaw rate and lateral acceleration), the estimator should be switched off in order to prevent the
estimation error build-up (see the above discussion related to numerical constraints of Eq. 6-

15 and results given in Fig. 6.4).

Further analysis of the estimator performance has been carried out for slalom (Fig. 6.7) and J-
turn maneuvers (Fig. 6.8). These results confirm a generally high accuracy of sideslip angle
estimation (the errors are typically less than 0.5°) for a wide range of driving conditions and
different types of driving maneuvers. Also, a favorable accuracy of the front and rear lateral
tire forces has been achieved, which justifies the assumption that this type of estimator may

be used for on-line estimation of cornering stiffness (see Chapter 7).
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Fig. 6.5 Measurements of the vehicle dynamics variables (a), sideslip angle estimate and
estimation error (b), and calculated and estimated lateral forces (c) for double lane change
maneuver carried out on flat road covered with packed snow.
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Fig. 6.6 Measurements of the vehicle dynamics variables (a), sideslip angle estimate and
estimation error (b), and calculated and estimated lateral forces (c) for driving on a 100m
radius circular track at velocities of 65kph.
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Fig. 6.7 Measurements of the vehicle dynamics variables (a), sideslip angle estimate and
estimation error (b), and calculated and estimated lateral forces (c) for slalom maneuver
carried out on flat road covered with packed snow.
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Fig. 6.8 Measurements of the vehicle dynamics variables (a), sideslip angle estimate and
estimation error (b), and calculated and estimated lateral forces (c) for J-turn maneuver
carried out on flat road covered with packed snow.
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6.5 Experimental results for standard set of VSD sensors

In order to gain the insight into limitations related to applying the above estimator in the mass
production vehicles, the estimator performance degradation has been analyzed for the case of
utilizing standard set of the vehicle dynamics sensors (i.e. vehicle on-board sensors utilized by
an ESP system) instead of the high precision inertial measurement unit equipped with the
GPS receiver. Commonly used vehicle dynamics sensors within the production vehicles
include the lateral accelerometer, yaw rate gyro, steering wheel angle, and wheel speed

sensors; and nowadays often the longitudinal accelerometer, as well.

The measurement of the vehicle longitudinal velocity enables tighter margins of the sideslip
angle estimation errors in comparison to the estimator utilizing the measurement model from
[18]. This additional measurement was readily available from the inertial measurement unit
utilized for the experimental validation in the previous Subsection. However, in case of using
standard VSD sensors the vehicle longitudinal velocity is derived from the nondriven front
wheels rotational speed measurements characterized with high noise content. Nevertheless,
this additional information remains beneficial, but the reliability of such measurement is
decreased during the braking or accelerating actions. More precisely, its accuracy is decreased
in case of braking due to the large longitudinal slips (the rear wheel drive vehicle has been
considered so the impact of the acceleration action to measurement accuracy should be much
less emphasized). In order to mitigate the braking related decrease in the estimator
performance the related element of the measurement covariance matrix 7, should be increased
(less confidence to the particular measurement). Consequently, the related Kalman gains
calculated from the Ricatti equation (6-12) would decrease and the a-posteriori estimates of
the state variables would be less affected by the unreliable longitudinal velocity measurement,

while the effect of the other measurements on the correction phase would not be influenced.

6.5.1 VSD sensors measurement errors analysis
Commonly used vehicle dynamics sensors have generally significantly larger measurement

errors then the aforementioned IMU. The increased level of the measurement errors (such as
offset, sensitivity errors, nonlinearity, noise etc.) affects the accuracy of the proposed
estimator. In order to gain the insight into the limits imposed by the usage of standard set of
sensors, the measurement errors and related sideslip angle estimation errors have been
analyzed for different driving maneuvers and environmental conditions. Moreover, dominant

sources of estimation errors for different driving maneuvers have been determined and
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appropriate compensation procedures have been considered in order to minimize the impact

of these measurement errors to the overall estimator performance.

The experimental vehicle's Electronic Stability Program (ESP) system was not equipped with
the longitudinal accelerometer, so the required signal is calculated within the ESP algorithm
(by calculating the first derivative of the vehicle reference velocity signal available on the
vehicle’s CAN bus). Consequently, the characterization of the longitudinal accelerometer
errors upon the estimator performance was not possible. Nevertheless, the errors of thus
reconstructed longitudinal acceleration signal has been analyzed and compared to more
realistic longitudinal acceleration measurement model obtained by adding the gravity
acceleration component induced by a pitch motion of the vehicle chassis to the reference
vehicle longitudinal acceleration measurement obtained from the IMU. This “simplified”
measurement model has been applied hereafter for reconstruction of the realistic ESP
longitudinal acceleration measurement signal used for the analysis of the accuracy of the

proposed estimator in the presence of measurement errors.

Measurement errors of the ESP inertial sensors have been obtained from filtered sensor
signals in order to suppress the impact of the measurement noise which is anyway filtered
within the KF. For that purpose the 2nd order Butterworth low pass filter with the pass-band
frequency of @, = 0.1, has been utilized, where @, is a half of the sampling frequency (e.g.

£,=20Hz, T, = 0.055).

Fig. 6.9 illustrates the reference state variables (measured by IMU) and vehicle dynamics
sensors measurement errors for double lane change maneuver carried out on a flat road
covered with packed snow. Fig. 6.10 shows the associated sideslip angle estimation errors
induced by individual vehicle dynamics sensors errors and overall aggregate estimation error

for the considered driving maneuver.
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Fig. 6.10 Sideslip angle estimation errors induced by the measurement errors of the standard
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126



Sideslip estimator based on nonlinear vehicle dynamics and stochastic tire models

The results shown in Fig.6.10 indicate that the largest impact to the estimation error has the
yaw rate gyro offset error, which in the initial interval of the experiment (during the straight
driving) results in a large drift-like estimation error. Evidently, the offset is present in the yaw
rate gyro measurement (see Fig. 6.9b). However, this kind of error can be effectively
suppressed by a simple offset compensation action during the straight driving conditions.
Moreover, if the estimator measurement update (i.e. correction phase) is disabled during the
initial interval of straight driving, the measurement offset related estimation error buildup will
be prevented, and the overall estimation errors significantly reduces (see the results presented
in Fig. 6.11). Note that all measurement errors in VSD sensor signal are present in those

verification tests (i.e. none of the error has been compensated).

More precisely, by switching off the EKF measurement update and related correction of the a-
priori state estimates according to Eq. (6-14), during the intervals of the straight driving when
the underlying vehicle dynamics model becomes unobservable, helps in reduction of the
measurement offsets-related drift-like estimation errors. For this purpose the control variable
C,yr has been defined as (see Fig. 6.11c):

0 o, (k)< .4 Na, (k) <a,,v u(k)<u,,

C,y (k)= (6-18)
1 else

that is utilized for activating and deactivating the KF measurement update phase, and where
aym, @, and uy, are the preset thresholds representing a tuning parameters. In order to reduce
the chattering effects in calculation of the Cyy (i.e. the measurement noise-related frequent and
multiple setting and resetting) the filtered measurement signals have been used. The lateral
acceleration and yaw rate measurements are used in Eq. (6-18) for monitoring the vehicle
lateral dynamics excitation levels and detecting the conditions of decreased observability of
the estimator underlying vehicle dynamics model. Moreover, due to the increased sensitivities
of sideslip angle estimation to the longitudinal velocity estimation residuals at low vehicle
speeds (see Fig. 6.4) the measurement update and sideslip angle estimation should be held
inactive (typically for u < 5 m/s). This restriction, however, does not have effect on the
overall performance because in such conditions the sideslip angle is typically very small and
vehicle is operating well within the stable region. The results illustrated in Fig. 6.11 have been

obtained for the activation thresholds (a,,» = 0.25 m/sz, @ = 0.0087 rad/s, and uy, = 5 m/s).
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Fig. 6.11 Sideslip angle estimation errors induced by the measurement errors of the standard
VSD sensors for double lane change maneuver at velocities of 50kph in case of activated
switching off of the KF a-priori estimation correction during the straight driving: estimates
(a), estimation errors (b), and update deactivation signal (c).

Although, the KF measurement update switching ON/OFF action enables significant
reduction in the drift-like estimation error during straight driving conditions, in order to

further decrease the estimation errors the sensors offset compensation is required.

Another relevant source of the estimation errors, related to the lateral accelerometer
measurement bias, is a result of the gravity acceleration component (i.e. gsingcosé = gsing)
see Eq. (5-7). In order to be able to compensate for such errors, the information regarding the
vehicle roll is required. On the other hand, the estimation errors induced by the wheel speed
and longitudinal acceleration measurement errors are not likely to be resolved by the
compensation (i.e. the compensation would require additional sensors and would be highly
sensitive to road disturbances, braking, accelerating actions etc.). These errors could be, on
the other hand, reduced by performing adequate measuremement preprocesing and/or by

tuning of the KF state and measurement covariances.
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6.5.2 Roll angle estimation for lateral accelerometer bias compensation
The roll gyro is not the standard vehicle dynamics sensor and therefore the roll angle, aimed

for the compensation of the gravity acceleration component in the lateral accelerometer
measurement, needs to be estimated somehow. For this purpose, a simple second order model
of the vehicle roll dynamics, defined by Egs. (6-19)-(6-22) has been utilized [49] (see

Appendix C for meaning and values of roll model parameters):

1,.0+06F, t—m.ah =0 (6-19)
The moment of inertia for the instantaneous roll axis and change in the tire normal loads can

be defined as:

I = I;x rm ok (6-20)
oF =b Lgrk Ly (6-21)
z r 2 r 2

By inserting the Egs. (6-20) and (6-21) into Eq. (6-19) the following roll model is obtained:

2 2
1.6+ 2 g B ha, (6-22)
2 2
Based on the above equations the transfer function model of the vehicle roll dynamics can be
defined as:
G(S) — ¢(S) _ mrhl 1 (6-23)

a,(s) I, s +bs+k,

rce

where the coefficient in the denominator of transfer function are defined by the following

expressions:
2 2
b = 52’; L k= ’2‘]’ (6-24)

The state space representation of the above roll dynamics model can be formulated as:

0 1 0
X = X + u
_kl _bl mrhl/]rc

y=[0 1]x

where x = [¢ ¢]’ andu=a,.

(6-25)
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The dynamic vehicle roll model defined by Eq. (6-22) can be applied in a case of driving on a
flat road without skidding, and it presumes the linear damper characteristics. Consequently, it
looses its accuracy on a banked road and in the case of understeering or oversteering

conditions.

On the other hand, the kinematic roll model based on Eq. (6-26) [67] can be used for rough
roll angle estimation in the case of driving on the banked road. The below equations can be
derived from the accelerometer measurement model (see Chapter 5 and [30]) from Egs. (5-7)

and (5-8) by neglecting the measurement bias and noise terms:

1—a, — a,—ou—y
0= arcsin(wj , §= arcsin[;j (6-26)
g gcosd

However, the lateral velocity and its derivative are typically not available, and therefore the
approximations of the above expressions are used in [67] for estimation of the pitch and roll

angles:

~ (u—a ~ . |la,—ou
0= arcsm( = j , ¢ =arcsin| ————— (6-27)
g gcost

Note that these rough estimates will be valid in the maneuvers in which the lateral velocity
and its derivation are small or moderate. These conditions can be monitored by checking the
steering angle derivative and lateral acceleration signals. The benefit of the approach given by
Eq. (6-27) when compared to the 2nd order roll dynamics model (6-25) is that it can provide
reasonably accurate roll estimates on the banked road. Therefore, the large discrepancies
between these two models can be used as an indicator of the bank (under presumption that the
severe lateral dynamics excitation conditions characterized with large v and v can be

detected).

Another issue related to reconstruction and measurement of the roll angle is related to the
effect of the so-colled kinematic bias. Namely, a kinematic bias is an additive component in
the roll rate gyro signal, which is induced by the combined cornering and pitch motion of the

vehicle [67], and it can be derived from the following basic kinematic equations:
¢ = o, + o, singtand + o, cosgtan b (6-28a)
d~w, +o. tand (6-28b)

Namely the kinematic bias in the roll rate gyro measurement is induced by the second right-

hand side term in Eq. (6-28b), which can result in potentially large roll angle error.
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Apparently this kinematic bias, illustrated in Fig. 6.12b for the driving on a circular track
maneuver, has not been compensated for within the IMU. Therefore, it should be considered
when dealing with the reference roll angle measurement signal that is used for validation of
the roll angle estimate obtained from the simple second order roll dynamic model and used for

the later compensation of the lateral accelerometer bias in sideslip angle estimator.
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Kinematic bias present in the reference roll rate sensor measurement (see Fig. 6.12b), induced
by a non-negligible fw_ term in the roll kinematic model (6-28b), directly results with the roll

angle reconstruction error represented in this case as a saw tooth signal superimposed upon
the true roll angle [67]. Note that the estimated roll angle, based on the second order roll
dynamics model (6-23), is not influenced by this kinematic bias since it does not use the roll
rate sensor measurement. The results shown in Fig. 6.12a indicate that if the kinematic bias is
compensated the estimated and measured roll angle signals are characterized with rather small

discrepancies.

Fig. 6.13 illustrates the relevant vehicle dynamics measurement errors, the effectiveness of the
compensation of the yaw rate gyro offset and lateral accelerometer gravity-related offset term
related errors, and respective improvements in the sideslip angle estimation accuracy for a

double lane change maneuver.
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Fig. 6.13 Estimation errors in case of sensor measurement errors compensation w/o a,
filtering: yaw rate gyro and longitudinal accelerometer errors (a), sideslip angle estimate and
estimation error (b), roll angle estimate (c), and lateral accelerometer errors (d).

The presented results (samling rate 7, = 10ms) have been obtained for the following settings

of the state covariance matrix Q =diag([1.6, 0.1, 0.02, 0.2, 0.2, 20, 20, 20, 20]~107) and
measurement covariance R = diag([0.01, 0.1, 0.1, 0.1, 0.1, 1]).

According to the results illustrated in Fig. 6.13 there is an offset in the reference roll angle
signal obtained from the RT3003 measurement unit (¢, = -1deg). Besides this offset in the
reference signal, the roll angle estimate, obtained by using the roll dynamics model, is quite
accurate. Consequently, the lateral accelerometer gravity component (rather small in this

maneuver) can be effectively compensated for (Fig. 6.13d), and related estimation error

reduced (Fig. 6.13b).

The lateral accelerometer signal is characterized by relatively large noise that results in the
increased sideslip estimation errors, especially under conditions of small lateral dynamics
excitation (indicated by small lateral acceleration and yaw rate that result in small lateral

velocity and sideslip angle as well). However, these errors can be effectively reduced by
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utilizing a low-pass filter and filtering the lateral accelerometer measurement before it is
forwarded to the Kalman filter. The efficiency of such pre-filtering is illustrated in Fig. 6.14
for a double lane change maneuver. The 2nd order Butterworth low-pass filter with f, = SHz
has been utilized. Moreover, the linear acceleration signals are usually also filtered within the
inertial measurement unit in order to generate the reference signals. In this case, in order to
compensate for the effect of time delay in accelerometer signal the reference sideslip angle is
also filtered and the results of this intervention on the estimation are illustrated in Fig. 6.14.
(all other parameters remained the same). According to the results presented in Fig. 6.14b it is
evident that the transient estimation errors can be effectively reduced by removing the

abovemantioned time delay between the inertial sensors measurements and sideslip angle

reference.
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Fig. 6.14 Sideslip angle estimation error after compensating for the time delay in lateral
accelerometer signal: lateral accelerometer measurement error (a) and sideslip angle
estimation error (b).

The effect of the state covariance tuning of the longitudinal velocity state variable upon the
accuracy of sideslip angle estimation is illustrated in Fig. 6.15. Namely, by setting the higher
value of the longitudinal velocity state variable covariance g, results in lower sideslip angle
peak estimation errors during transients. The simultaneous change of the covariance, of both
the longitudinal and the lateral velocities (¢, and ¢,), however does not have any affect upon

the estimation error (i.e. it is predominantly determined by their ratio).
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Fig. 6.15 Sideslip angle estimation error vs. longitudinal velocity state covariance q, for
double lane change maneuver and compensated dominant sensor errors.

A similar analysis has been carried out for the slalom maneuver on a flat low-p surface. The

vehicle dynamics state variables and sensor measurement errors are shown in Fig. 6.16.
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Fig. 6.16 Measurement errors of the standard VSD sensors for the slalom maneuver: vehicle
dynamics state variables reference signals measured by IMU (a), wheel seed sensors based
vehicle velocity and yaw rate gyro measurement errors (b), and lateral and longitudinal
acceleration measurement errors (c).
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The related sideslip angle estimation results shown in Fig. 6.17, obtained for the case of
compensated yaw rate bias and lateral accelerometer gravity component error, indicate that
the dominant sources of the remaining estimation errors are uncompensated lateral
acceleration measurement error (e.g. in this maneuver the total acceleration measurement
error amounts approximately 10% of the peak acceleration value, see Fig. 6.16c) and
longitudinal velocity errors. The remaining yaw rate errors (after bias compensation) and

longitudinal acceleration-related errors are present, but they are relatively small (less then

0.3 deg).
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Fig. 6.17 Sideslip angle estimation errors induced by the measurement errors of the standard
VSD sensors for slalom maneuver at velocities of 60kph. estimates (a), estimation errors (b),
and update deactivation signal (c).

Note that the overall estimation errors induced by the standard vehicle dynamics sensors

measurement inaccuracies after the compensation are relatively small for the considered
slalom maneuver (see Fig. 6.17b, ,5 <1deg). Moreover, the estimator switching-off action,

controlled by C,4 signal (shown in Fig. 6.16c) mitigates the generation of the larger drift-like

estimation errors. The effectiveness of the error compensation is highlighted in Fig 6.18b
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where the sideslip angle estimates without sensor error compensation is compared to the one

obtained after compensation already shown in Fig 6.17b (see light blue colored trace).
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Fig. 6.18 Estimation errors in case of sensor measurement errors COmpensation: yaw rate
gyro and longitudinal accelerometer errors (a), sideslip angle estimate and estimation error
(b), roll angle estimate (c), and lateral accelerometer errors (d).

The accuracy of the roll angle estimation based on the simple 2" order dynamic model and
related lateral acceleration error compensation are illustrated in Fig. 6.18c and Fig. 6.18d,
respectively. The roll angle estimation errors at a peak roll angle values can be related to the
presence of the road disturbances, nonlinear damper characteristics etc. Nevertheless, the
sideslip estimation error in case of the compensated sensor measurement errors is reduced

well within the one degree span (Fig. 6.18b and Fig. 6.17b).

Fig. 6.19 illustrates the estimation results for the steady cornering maneuver on the circular
track at low-u surface, which is characterized with relatively poor excitation of the vehicle
lateral dynamics (i.e. small lateral velocities) and consequently represents the challenging
maneuver for accurate estimation of the sideslip angle. In Fig. 6.20 the respective sensor

measurement errors and roll angle estimate have been presented.
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Fig. 6.19 Sideslip angle estimation errors induced by the measurement errors of the standard
VSD sensors for cornering maneuver: estimates (a), estimation errors (b),
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Fig. 6.20 Estimation errors in case of sensor measurement errors compensation for cornering
maneuver: yaw rate gyro and longitudinal accelerometer errors (a), sideslip angle estimate
and estimation error (b), roll angle estimate (c), and lateral accelerometer errors (d).

Evidently in this maneuver the relation between lateral acceleration and roll angle is
unreliable while the large component in the measured roll angle signal is caused by the road
surface (packed snow) unevenness disturbances and some road bank. In such conditions the
lateral accelerometer gravity bias compensation based on the rough roll angle estimate
obtained from the simple second order dynamic roll model is ineffective. Moreover if the state
covariance matrix is increased (more precisely if the g, component is increased) the
estimation errors becomes much larger and still the compensation remains ineffective. Since
this maneuver is characterized by the steady cornering conditions without excessive lateral
velocity and its derivative the kinematic roll model defined by Eq. (6-27) can be applied for
roll angle estimation. Difference between the two of the roll angle estimates, illustrated in Fig.
6.21, clearly indicates the presence of the road bank or some kind of road unevenness

disturbance.
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The results of the roll angle estimate presented in Fig. 6.21a indicate a favorable accuracy of
the reference (kinematic) roll model, when compared to the second order dynamic model-
based estimate, for the constant cornering maneuver characterized with low excitation level of
the vehicle lateral dynamics. Nevertheless, the better estimate of the roll angle and improved
compensation of the gravity-related accelerometer bias the sideslip estimation accuracy has
not been improved much, as a result of the combined effects of other, uncompensated sources
of errors (e.g. longitudinal velocity and acceleration measurement errors), low excitation of
the lateral dynamics and related small magnitudes of the sideslip angle (i.e. numerical

sensitivity constraints, cf. Fig. 6.4).

In Fig. 6.22 and 6.23 the vehicle dynamics sensor measurement errors and related sideslip
angle estimation errors have been analyzed for the J-turn maneuver carried out on a low-u
surface (i.e. packed snow). The KF longitudinal velocity threshold parameter has been
decreased (u4=0.25m/s) in order to ensure the valid estimate for the most part of the interval
with emphasized sliding of the vehicle (i.e. time interval from 12 to 15™ second that is

characterized with longitudinal velocity less then Sm/s).
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Fig. 6.22 Measurement errors of the standard VSD sensors for J-turn maneuver: vehicle
dynamics state variables reference signals measured by IMU (a), wheel seed sensors based
vehicle velocity and yaw rate gyro measurement errors (b), and lateral and longitudinal
acceleration measurement errors (c).

Based on the results given in Fig. 6.22, dominant measurement erros are observed in the
longitudinal velocity and longitudinal acceleration measurement signals. Consequently, the
sideslip angle estimation error is predominantly determined by the vehicle velocity error as

illustrated in Fig. 6.23 (compare the green and cyan trace on time interval 8-16" second).
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Fig. 6.23 Sideslip angle estimation errors induced by the measurement errors of the standard
VSD sensors for J-turn maneuver: estimates (a), estimation errors (b),
and update deactivation signal (c).

The above results have been obtained for the case of compensated lateral acceleration and
yaw rate measurement biases. Problem of large sideslip angle estimation errors at the end of
the maneuver characterized with relatively high sideslip values is related to (i) small vehicle
longitudinal velocity and related numerical errors in calculating sideslip angle, and (ii)
significant longitudinal velocity measurements errors induced by large longitudinal slips due
to braking action. Fig. 6.24b illustrates that the B-estimation is effective regardless of the
presence of large longitudinal velocity errors observed in Fig. 6.22b. In this case the
difference between the proposed approach of calculating the vehicle velocity solely from the
front non-driven wheel and the internal reference velocity signal derived directly from
vehicle’s ESP system is emphasized, and the proposed approach has proved to be much more
accurate, because it does not relay on the rear tire speed signals characterized with large
longitudinal slips due to severe braking action undertaken at the end of this maneuver.
Although the absolute values of the sideslip angle estimation errors are rather high the relative
errors are reasonable for this kind of driving maneuver and when considering the accuracy

limitations of the standard vehicle dynamics sensors.
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Fig. 6.24 Estimation errors in case of sensor measurement errors compensation for J-turn
maneuver: yaw rate gyro and longitudinal accelerometer errors (a), sideslip angle estimate
and estimation error (b), roll angle estimate (c), and lateral accelerometer errors (d).

In Fig. 6.25 the measurement errors of the standard set of vehicle dynamics sensors are
illustrated for the case of gentle slalom maneuver on circular banked high-p track. This
maneuver is exceptionally challenging since the vehicle is driven on a banked road and the
lateral dynamics is poorly excited (i.e. the lateral velocity and sideslip angle are small). Also,
the measurement errors in lateral acceleration signal are significant (external disturbance) and
the roll estimation based on the second order dynamic model becomes highly inaccurate and
consequently the error compensation ineffective (see Fig. 6.26). However, in such conditions
the kinematic roll model can provide favorably accurate roll angle estimate the can be used
for effective lateral acceleration measurement error compensation and significant
improvement of the sideslip angle estimation accuracy (see bright gray trace in Fig. 6.26b). It
should be noted that this error is consistent with the results obtained for other maneuvers

where the error margin of the estimator, when using a standard set of vehicle dynamics
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sensors instead of precision IMU and GPS, typically doubles (the error margin for this

maneuver in the nominal case amounts approximately 1°).
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Fig. 6.25 Measurement errors of the standard VSD sensors for the steady cornering
maneuver on banked circular track: vehicle dynamics state variables reference signals (a),
wheel speed sensors based vehicle velocity and yaw rate gyro measurement errors (b), and

lateral and longitudinal acceleration measurement errors (c).
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Fig. 6.26 Lateral acceleration measurement errors compensations based on the roll angle
estimation (a) and related sideslip angle estimation errors (b).
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6.6 Adaptive fading EKF - based estimator

In order to improve the overall estimation accuracy of the basic, non-adaptive estimator for a
wide range of operating conditions and driving maneuvers the adaptive fading algorithm has
been utilized which changes the Kalman filter state and measurement covariance matrices by
multiplying them with a certain time-variant scaling factors. More precisely, the single fading
and multiple fading factors have been considered for formulation of the adaptive Kalman
filter (i.e. SFF or MFF Adaptive Fading Kalman filter respectively, see Chapter 3) aimed for
estimator design. Scaling factors are determined based on the difference between the
anticipated theoretical measurement residuals or innovation (defined by Eq. (3-29)) and the
true residuals obtained from Eq. (3-30). These adaptation algorithms change the state and
measurement covariance matrices (and consequently the Kalman gain and a-priori state
estimation error covariance matrices) in the presence of the increase of the measurement
residuals indicating the decrease in the reliability levels of the process model (i.e. unmodeled
disturbance, change in the model) or increased errors in the measurement model (i.e.
increased sensor errors). Note that the model observability issues and related estimation errors
cannot be avoided by adaptation but only by switching of the estimator (as illustrated in Fig.

6.10).

In Fig. 6.27 the performance of the single scaling factor adaptive fading-based estimator has
been compared to the nominal non-adaptive filter for the constant steering driving maneuver
on the sloped circular asphalt track (high-p) and utilization of the high precision sensors
measurements. Road bank angle constitute the unmodeled disturbance that affects the
reliability of vehicle dynamics and measurement models, and consequently decreases the
estimation accuracy. Primary application of such adaptation methods are thus related to
dealing with changes in the reliability of the model itself due to the presence of the
unmodeled dynamics or external disturbances that induce discrepancies between the predicted

and measured residuals.
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Fig. 6.27 Single fading factor AFEKF performance for driving on the banked oval concrete
track: sidesip angle estimate and estimation error (a), state covariance and measurement
covariance fading factor (b), and dynamics model reliability signal (c).

The initial sideslip angle estimation error of approximately 0.35deg (see Fig. 6.23a) remains
constant during the time interval from 0 tol12 seconds due to the low excitation of the lateral
dynamics and related reduced observability of the dynamics model. These results have been
obtained for the case of utilizing the quality IMU and GPS sensors measurements, where the

inertial measurements are characterized with compensated gravity acceleration components.
The dynamic model reliability is analyzed by utilizing the expression:

y(k)=¥" (k| k=DHE)P(k | k-DH" (k))"'§(k |k -1) (6-29)
In general the increase of y indicates the decrease of the model reliability, predominantly due

to the emphasized effects of the unmodeled dynamics or external disturbances (e.g. road bank,

road grade etc.)
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Fig. 6.28 illustrates the effect of the application of memory fading adaptation algorithms upon

the sideslip angle estimation accuracy for J-turn maneuver carried out on a low-u surface.
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Fig. 6.28 Comparison of the accuracy of the non-adaptive and adaptive estimators in case of
using precission IMU sensors measurements for J-turn maneuver on low-mu surface.

Based on the results given in Fig. 6.28 it can be concluded that the adaptive estimator surpass
the non-adaptive estimator in their performances, where the multiple scaling factor AEKF

provides somewhat better estimate than the single scaling factor-based estimator.

It should be noted, that in the double lane change or slalom maneuvers (cf. Figs. 6.9 and 6.15)
carried out on the flat road and characterized by the small impact of the unmodeled
disturbances (i.e. roll and pitch dynamics) and consequently the small measurement residuals
the adaptive estimator becomes less efficient. Namely, having in mind the fact that the
measurement model is given much more weight than the state model in tuning of the KF
(because the state model comprises the first order random walk type stochastic models of tire
forces) the adaptive estimators, in such conditions, provide similar estimates as the basic non-

adaptive one.

6.7 Summary
The EKF-based sideslip angle estimator has been proposed, which is based on the SDoF

single-track vehicle dynamics model with a stochastic tire force submodel. The conducted
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simulation analysis and experimental verification have shown a favorable accuracy of the
proposed sideslip angle estimator for the nominal case of utilizing the high precision
INS/GPS measurement unit signals (i.e. estimation errors typically less then 0.5deg) in
different driving maneuvers (e.g. double lane change, slalom, steady cornering etc.) thus
indicating a good application potential of the proposed approach based on the reduced-order
vehicle dynamics model. In addition to the sideslip angle estimate, the estimator also provides
accurate estimates of tire forces, thus providing a good foundation for lateral tire curve

stiffness and tire-road coefficient of friction estimation (see Chapter 7 for details).

Moreover, in the case of utilizing the standard set of vehicle dynamics sensors, the initially
poor estimation accuracy of the proposed sideslip angle estimator can be significantly
improved by conducting relatively simple error compensations on yaw rate gyro and lateral
accelerometer. For the most considered driving maneuvers the remaining estimation errors
can be suppressed below the one-degree margin. The exception is the J-turn maneuver on
low-p surface in which the sideslip angle has reached high values and vehicle has evidently

lost the grip and experienced some significant skidding.

The proposed memory fading adaptation of EKF of the sideslip angle estimate provides
higher accuracy of the sideslip angle estimates in the case of the emphasized unmodeled
dynamics effects (predominantly the roll and pitch dynamics) and in the presence of external
disturbances such as the road bank. In the presence of emphasized sensor errors, as it is the
case when using the standard vehicle dynamics sensors, the adaptation algorithm becomes
less effective. In this case the simple modifications of the ratio of the longitudinal and lateral

velocity state variables covariance can provide better estimator performance.
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7 Reconstruction of tire cornering
stiffness and road coefficient of
friction

Although, the estimator presented in Chapter 6 has been primarily developed for estimation of
the sideslip angle, it can be also utilized for estimation of other vehicle dynamics variables
and parameters. More specifically, based on the results obtained trough estimator
experimental verification, it has been found out that the proposed estimator concept has a
good potential for application in estimation of tire cornering stiffness and tire-road coefficient

of friction.

7.1 Tire sideslip angle and tire lateral force estimation

In order to illustrate these possibilities the estimation results for some relevant driving
maneuvers are presented below, for the nominal case of utilizing the high-quality inertial

sensors and GPS receiver measurements.

The reference signals for the tire sideslip angle have been derived analytically based on the
known vehicle parameters and available high precision inertial measurements by utilizing
two-track and single-track vehicle models. Presuming small vehicle sideslip angles f and
related trigonometric functions approximations for small angles (i.e. sinf~/f and

cos f =1), the tire slip angles for individual wheels can be obtained from the following

equations of the two-track vehicle model [5]:

V. +b V. +b
a, =5—atanM, a, =5—atanM (7-1)
Vg ——@® Vg +—-@®
CoG 2 z CoG 2 z
V. .B- V.o -
arl — _atanM , arr — _atanM (7_2)
Ve ——@ Voo + 4 w
CoG 2 z CoG 2 z

where ¢ is the vehicle track, b and ¢ are longitudinal distances from front and rear axle to
vehicle CoG, respectively, Ve, is the vehicle CoG absolute velocity, and o 'is the front wheel

steering angle.
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After substitution of the vehicle longitudinal and lateral velocities u =V, cos 8 and
v=V,.sinf, and applying the trigonometric functions approximation for small angles

(u=V,, and v=V_.[), the above equations read:

v+bw v+bw
a,=6-atan———, «a,=50-atan——— (7-3)
t t
Uu——o, u+—o,
2
V—co V—co
a, = —atan—tz, a, = —atan—tz (7-4)
Uu——o, U+ _—o,
2 2

The equivalent, lumped front and rear axes tire slip angles are obtained by averaging the

individual tire slip angles:

o, +a a,+a
S Jr rl r
Oy =—"—"—, «,,=—"—"""" 7-5
s ) 2 5 (7-5)
where subscript 2 signifies the two-track model. Alternatively, front and rear tire slip angles

reference can be derived from the single-track vehicle model as [5]:

a, =6 YFrEO: , _Tvies, (7-6)

r

u u
The tire slip angle estimates are derived from the same equation, but instead of the

measurements, the estimated velocities and yaw rate signals have been utilized.

. P+bd . V—ch
G, =65, g == (7-7)

I

u u
Since the tire sideslip angle and tire lateral forces are not measured, the reference signals have

been obtained from the following algebraic expressions [25]:

cma, +1 0, bma, -1 o,
Fp=——"—, F,=—"—""— (7-8)
7 (b+c)coso b+c
while their estimates are readily available in the proposed sideslip angle estimator (i.e. last
two elements of the process model state vector, see Eq. (6-6)). The tire slip angle and lateral
tire force estimates for the slalom maneuver are given in Fig 7.1, together with the
corresponding reconstructed, reference signals. The obtained estimates are characterized with

a favorable accuracy.
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Fig. 7.1 Estimates of the tire lateral forces (a) and tire sideslip angles (b) for slalom

maneuver at 60 kph on packed snow.

7.2 Cornering stiffness estimation
Fig. 7.2 illustrates the reconstructed (i.e. calculated by using Egs. (7-6), and (7-8)) and

estimated tire static characteristics (i.e. estimated by using the tire force estimates of the

sideslip angle estimator developed in Chapter 6, and tire slip angles obtained from Eq. (7-7))

for a slalom maneuver at

road covered with packed snow . The corresponding front and rear

cornering stiffness has been identified by applying the linear interpolation of the recorded

lateral tire static characteristic data derived from the estimated lateral forces and estimated tire

slip angles. The linear fitting of lateral tire static characteristic data is carried out for the

interval of tire slip angles of +3 degrees, corresponding to the adhesion part of tire static curve

(Fig. 2.5).
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Fig. 7.2 Reconstruction of the front and rear axis cornering stiffness for slalom maneuver at
60 kph on packed snow.
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The obtained tire cornering stiffness estimates, for number of driving maneuvers on low-u

and high-x road are summarized presented and compared in Fig. 7.3.
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Fig. 7.3 Cornering stiffness estimates in slalom maneuvers on low-mu and high-mu road
surfaces: front axis a) and rear axis b).

Based on such offline identified tire cornering stiffness parameters (shown in Fig. 7.3),
derived by utilizing the same estimator concept used for the sideslip angle estimation in
former Chapter and using the procedure described above and illustrated in Fig. 7.2, the
information regarding the type of the surface can be extracted. Namely, from the obtained
cornering stiffness estimates and according to the relation between the tire cornering stiffness
and tire-road coefficient of friction (cf. [38,55,65]), at least the basic classification of the type
of the surface seems to be feasible (i.e. low-u / high-u surfaces). More precisely the results
presented in Fig. 7.3 obtained from a set of driving maneuvers performed on low-p and high-
u surfaces clearly show that the estimated cornering stiffness significantly differ depending on
the type of the surface can be utilized for surface coefficient of friction classification. This
effect, of increase of the tire static curve gradient with the increase of the road coefficient of
friction has been observed and recognized for tire longitudinal static curves [23,55], but it has

not been documented in detail for lateral tire static curves.
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Reconstruction of tire cornering stiffness and road coefficient of friction

The results of on-line cornering stiffness estimation for the case of utilizing the high-precision
IMU measurement signals and applying the direct estimation method described in [26] and
defined by Egs. (7-9) and (7-10) are shown in Fig. 7.4.

cvm+comu+1_w, u

C, =
‘ —v-bw. +5u 1

(7-9)

c - bym+bo.mu—1I_ o, u (7-10)
cw, —v t

The cornering stiffness reference has been calculated from Egs. (7-9) and (7-10) by utilizing
the available precision IMU measurements (e.g. u, v, and @) and their time derivatives (e.g.
vand w, ), while the estimates have been obtained from the same equations by using the

estimates of these quantities.

x 10°

Calculated Calculated

Estimated B Estimated
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C, [N/rad]
C. [Nirad]

Fig. 7.4 Cornering stiffness estimates in the steady cornering maneuver on circular track:
front axis (a) and rear axis (b).

The results for the front and rear cornering stiffness given in the Fig. 7.4, obtained for the
driving on a circular path on low-x surface. The front wheel cornering stiffness is somewhat
smaller than for the rear wheel. The high noise content in the estimated signals is induced by
the yaw rate and lateral velocity time derivative term in the underlying Egs. (7-9) and (7-10).
In order to reduce the noise level in the estimated signals and reduce the sensitivity of the
estimation to the sensor outliers some of the closed loop methods (observers), documented in

the literature [20,26,38,65,72-74] should be implemented.
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Reconstruction of tire cornering stiffness and road coefficient of friction

Finally, the feasibility of the on-line estimation of the maximum road coefficient of friction
from the estimated maximum tire lateral force has been considered below. Namely, Fig. 7.5
shows the measured vehicle dynamics state variables and estimated front and rear tire lateral
forces derived from the sideslip angle estimator for a J-turn maneuver on the low-u packed-

snow surface.
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Fig. 7.5 Estimation of the tire forces for the J-turn maneuver: vehicle dynamics state
variables reference signals measured by IMU (a), estimated total lateral and longitudinal tire
forces (b), and front and rear tire lateral force estimates (c).

During the time interval corresponding to the maximum lateral tire forces the longitudinal tire
forces are relatively small and consequently the maximum coefficient of friction can be
determined from the nominal rear tire normal force £,y and the estimated lateral force limit

according to the following equation [25]:

A

~ Fyr,max (7 11)
lumax - F

zr0

where the nominal rear tire normal force can be calculated from the vehicle parameters by

using the following equation:
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_ mgb
c+b

(7-12)

zrQ

Fig. 7.6 shows that during the interval characterized with the maximum tire lateral force the
vehicle sideslip angle is accurately estimated and it reaches values characteristic for limit of

adhesion on snow surface.
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Fig. 7.6 Estimation of the maximum tire lateral force and related tire-road coefficient of
friction: estimated tire static characteristic (a), estimated sideslip angle (b), and sideslip
angle estimation error (c).

Consequently, for this particular case, the estimate of road coefficient of friction, related to
the maximum estimated lateral tire force, equals 0.4, what correlates well with the typical
values of the coefficient of friction for snow (i.e. 0.35-0.4, according to [25]). This result

illustrates a good potential of such estimation concept for online implementation.
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8 Conclusion

In this thesis the vehicle yaw rate and sideslip angle estimators, based on the sensor fusion
approach and Kalman filter methodology, have been designed. These estimators have been
tested by means of computer simulations based on the 10DoF vehicle dynamics model.
Moreover, the sideslip angle estimator based on the vehicle dynamic model with stochastic
modeling of the tire forces has been verified on the realistic experimental data obtained from

the test vehicle.

The proposed adaptive Extended Kalman Filter (EKF)-based kinematic yaw rate estimator
combines the approach based on two diagonally-placed accelerometers with the approach
relying on the non-driven wheels speed sensors. Such a combined estimator, implementing
the sensor fusion approach, takes advantage form the complementary benefits of the two
individual estimation concepts. The major source of estimation errors for the first approach is
the accelerometer offset that causes the drift-like estimation error, while the second approach
cannot be used during braking and it is sensitive to the tire effective radii variations and road
bump disturbances. The proposed estimator significantly reduces the overall estimation errors
by utilizing the fusion concept. Accelerometers are predominantly used during yaw rate
transients and when the accuracy of the wheel speed sensors is compromised, while the wheel
speed sensors are utilized during the quasi-steady-state yaw rate intervals when the

accelerometer-based estimation is sensitive to drift.

Further improvement of the wheel speed sensors reliability has been achieved by performing
an open-loop compensation of the dominant wheel speed sensor-based estimation errors.
More specifically, the static and dynamic compensation procedures have been derived and
embedded into the estimator algorithm in order to reduce the tire deflation/wear and lateral
load transfer-related estimation errors. Furthermore, the rule-based adaptation algorithm is
extended with the road bump disturbance detection feature, in order to remove potentially

large, environment-related wheel speed sensors-based estimation errors.

The performance of the adaptive EKF-based yaw rate estimator has been verified by means of
computer simulation against the reference 10DoF vehicle dynamics model, and the obtained

results have pointed out that in various driving maneuvers the proposed estimator provides
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superior overall estimation accuracy when compared to performances of the individual
kinematic estimators. The yaw rate estimation errors are mostly well below 10% for a wide

range of driving conditions.

The GPS and INS fusion-based kinematic sideslip angle estimator has been designed by
utilizing the adaptive EKF methodology. This estimator combines the low sampling rate GPS-
based vehicle velocity measurements with the high sampling rate inertial sensors
measurements (lateral acceleration and yaw rate), in order to compensate for the potentially

large drift-like sideslip angle estimation errors caused by the inertial sensor offsets.

The estimator performance has been tested by running the computer simulations using the
accurate 10DoF vehicle dynamics model, and the conducted analysis has indicated that the
estimator can be rather sensitive to small errors of pre-estimated longitudinal vehicle velocity,
due to the static and dynamic tire radii variations. Dominant estimation errors related to the
static tire radii variation can be effectively compensated for during the periods of straight
driving by comparing the GPS velocity and wheel speeds measurements. Further refinements
of the longitudinal velocity pre-estimation may include the compensation of relatively small
dynamic errors. In order to mitigate potentially large degradation of the sideslip angle
estimation accuracy during breaking, due to significant vehicle velocity pre-estimation errors
related to large tire longitudinal slip, the sideslip angle is, in such conditions, estimated in the

open-loop mode.

The road bank effect represents a potentially large unmodeled disturbance that may reduce the
sideslip angle estimation accuracy by inducing significant drift-like estimation errors. These
errors are related to the additional accelerometer offset caused by gravity acceleration
component. In order to reduce these errors, two compensation methods have been considered:
first method modifies the EKF tuning in order to speed up the accelerometer offset estimation
and effectively cancel the additional offset, while the second method uses road bank-related
gravity acceleration estimate. The first method proved to be ineffective in the case of EKF
estimates averaging, needed for compensation of the GPS measurement latency-related errors,
that results in icreased filter response time, while the second method provides good results.
Namely, the GPS measurement latency has proved to be a major source of the sideslip
estimation transient errors. However, by presuming that this latency is known and that it
remains constant over time, it can be compensated by introducing the same latency in the

EKF prediction error calculation.
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The proposed estimator adaptation algorithm changes the Kalman filter state covariance
matrix in order to account for the changes in the vehicle dynamics conditions. More
specifically, the two sets of state variables covariance parameters have been used: one for
quasi-steady-state conditions and other for the intense dynamic behavior. The main idea of the
adaptation is to make the sensor offset estimation faster during the steady-state conditions and
slower during transients, where the transient intensity detection relies on the lateral
acceleration measurement and the estimate of the lateral velocity time derivative. The
adaptation algorithm enables adjusting optimal estimator performance with respect to
estimator response time, and damping of the oscillations in the estimated sensor offsets and
consequently the magnitude of errors in sideslip angle estimate. The performance of such
fully tuned, adaptive EKF-based estimator has been tested by simulations for double lane
change and double step-steer maneuvers. The obtained results have shown that the sideslip
estimation error of less than approximately 2 deg is achievable for a wide range of non-

braking operating conditions.

A vehicle dynamics model-based sideslip angle estimator has been designed by using an
adaptive EKF. The nonlinear single-track vehicle dynamics model with five degrees of
freedom has been utilized for the purpose of estimator design. Tire forces have been modeled

as first-order random walk state variables.

The estimator performance has been verified by computer simulations based on a detailed,
two-track 10 DoF vehicle dynamics model, as well as by off-line estimator execution based
on the experimental data recorded on the test vehicle equipped with both a high precision
IMU/GPS unit and a standard set of the vehicle dynamics sensors. The memory fading
algorithms have been used for making the estimator adaptive. However, when using the
precision inertial measurement unit signals, even for the constant tuning of the KF, the
favorable estimation accuracy have been obtained. More specifically, in the case of using the
nonadaptive estimator design the maximum sideslip angle estimation error less than 0.5° has
been obtained for the most considered driving maneuvers on a flat road. On the other hand,
the adaptive estimator surpasses the accuracy of the basic, nonadaptive estimator for steady
cornering and slalom maneuvers carried out on banked roads. Namely, in these, particularly
challenging maneuvers, the adaptive estimator has provided the estimation errors less than

0.5° compared to estimation errors somewhat over 1° for the nonadaptive estimator.

In the case of utilizing the standard onboard vehicle dynamics sensors, a significant

degradation of the estimation accuracy has been observed. However, by utilizing relatively
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simple measurement error compensation interventions for the two most critical sensors (i.e.
the yaw rate gyro and the lateral accelerometer) and by proper modifications of the KF tuning
parameters, the significant improvement of the estimator performance can be achieved. More
specifically, for the most driving maneuvers the estimation errors can be reduced to the 1°
margin (in comparison to the 0.5° error margin for utilizing the high precision IMU

measurement).

The proposed memory fading adaptation of EKF of the sideslip angle estimate provides
higher accuracy of the sideslip angle estimates in the case of the emphasized unmodeled
dynamics effects (predominantly the roll and pitch dynamics) and in the presence of external
disturbances such as the road bank. In the presence of emphasized sensor errors, as it is the
case when using the standard vehicle dynamics sensors, the adaptation algorithm becomes
less effective. In this case the simple modifications of the ratio of the longitudinal and lateral

velocity state variables covariance can provide better estimator performance.

It has been demonstrated that the proposed dynamic sideslip angle estimator can also be used
as a basis for estimation of the tire slip angles, tire cornering stiffness and tire-road coefficient
of friction. The feasibility and performance of such simultaneous estimation of additional
vehicle dynamics variables and parameters, has been analyzed by presuming the use of high

precision IMU/GPS sensor measurements.
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Appendix — A

Derivation of the Euler angles from local frame angular velocities

For any two given coordinate frames A and B which origins coincide, the coordinate
transformations between these two coordinate frames can be obtained through the successive
rotations of the one of the coordinate frames (Fig. A-1) by application of the Euler angles (¢ -
roll, @ - pitch, and y - yaw). In this particular case coordinate frame A corresponds to the
reference inertial frame, while the frame B is the body-fixed rotating coordinate frame with

angular velocities about its axes (@, ®,, and @.).

a,=a
Al Oy

b - a, =a,
<« T
a, I

Fig. A-1. Euler angles derivation from the body-fixed frame angular velocities.

Angular velocity vector of the rotating frame B, resolved to the inertial coordinate frame A, is
denoted as “@” (as used in [Baruh]). The velocity vector has three components, one for each

of the successive rotations (A — A',A'-A'',and A"-B) of the inertial coordinate frame A, and

related to the corresponding Euler angle (Fig. A-1).

Angular velocity vector of the rotating frame B, resolved to the inertial coordinate frame A, is

denoted as “@” (as used in [31]). The velocity vector has three components, one for each of

the successive rotations (A —A',A-A",and A'"-B) of the inertial coordinate frame A, and
related to the corresponding Euler angle (Fig. A-1).
‘o' ="0"+ "o "+ "0’ =y-a,+0-a, +¢-a (A-1)

The angular velocity vector can be resolved on the components of the rotating coordinate
frame B, if the appropriate coordinate transform is performed by utilizing the inverse of the
cosine transformation matrix R,, .

A=Rp,B (A-2)
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cy-cl sy-cl -s6
R, =|-sy-cO+cy -s0-s¢ cy-cO+sy-s0-s¢ cO-s¢ (A-3)
Sy -s¢p+cy-s@-cg —cy-s¢p+sy-s@-chd cO-co
The vectors of the successive rotational axes a,,a,,anda, from the inertial coordinate frame

A can be resolved to the rotating, body-fixed frame B components according to the following

expressions:
a,=-b,sind+b,singcosd +b, cosgcosl (A-4)
a, =b,cosg—b,sing (A-5)
a’ =b, (A-6)

When the terms from Egs. (A-4)-(A-6) are substituted in Eq. (A-1) the angular velocity vector

can be expressed as:

A

o’ =y (b, sin@+b,singcosd+b, cosgcosd)

: : (A-7)
+6(b,cosg—b,sing)+¢-b,
After rearranging Eq. (A-7) the following result is obtained:
‘o® = (¢—ysin@)b, + (ysingcos O+ Hcosg)b, (A-8)

+ (1/)cos¢cosﬁ—t9'sin¢)b3
According to the Eq. (A-8), the components of the angular velocity vector as functions of the

Euler angles and in terms of the body fixed coordinate frame are obtained as:

‘o =¢—ysing (A-9)
0P =yrsingcos @ + O cos g (A-10)
1o =y cospcos@—Osin g (A-11)

These equations, relating the angular velocities of the rotating body-fixed frame to the first

derivatives of the Euler angles can also be written in the matrix form as:
‘0’ =B-E (A-12)
where E = [¢ 0 W]T is the vector of the Euler angles and the B matrix reads:
1 0 —siné
B=|0 cos¢ singcosd (A-13)

0 —sing cosgcosé
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The Euler angles as functions of the body-fixed frame angular velocities in a form of the

nonlinear state-space dynamic system could be obtained as follows.

E=B"| o, (A-14)

where the inverse of the matrix B reads:

1 singtanf cosg@tand

B'=|0 cos ¢ —sing (A-15)
0 sin ¢ cos ¢
cos cosd

When this matrix equation is resolved on the algebraic equations and after the substitutions

o =0,.,0,=0,ando, = o, (Fig. A-1) following expressions are obtained [30,31]:

¢ = o, +(, sin(9) + ®, cos(¢)) tan(0) (A-16)

0= o, cos(P) — w, sin(P) (A-17)

= (@, sin(g) + . cos($)—— (A-18)
cos @
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Appendix — B

Specifications of the RT3003 inertial measurement unit

Model: RT3003 - two antenna unit

Table B.1 Performance specifications for RT3003 measurement unit

Parameter ‘ Value Parameter ‘ Value

Position accuracy Acceleration accuracy

CEP SPS 1.5m Bias 10mm/s* (15)

CEP SBAS 0.6m Linearity 0.01% (1o)

CEP DGPS 0.4m Scale Factor 0.1% (1o)
Range 100m/s”

Angular rate

Bias 0.01°/s (1o) Heading 0.1° (1o)

Scale factor 0.1% (1o) Pitch/Roll 0.03° (1o)

Range 100°/s Velocity accuracy 0.05kph (RMS)
Lateral velocity 0.2% (1o)
Slip angle (at 50kph) 0.15° (1o)
Track (at 50kph) 0.07° (1o)

Update rate of the unit signals is in the range of 100/250Hz.
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Appendix - C

Vehicle dynamics model parameters

Table C.1 Vehicle dynamics model parameters

Parameter Description Value [unit]

m Vehicle mass 1858 kg

1. Yaw moment of inertia 3515 kgm2

b Front axis distance from CoG 1.432 m

c Rear axis distance from CoG 1.472 m

t Vehicle track 1.625 m

I, Roll moment of inertia 655.2 kgm2
e Roll center moment of inertia 521.7 kgm2

m, Rear suspension mass 1011 kg

b, Roll damping rate 5022 Ns/m

k, Roll spring rate 41328 N/m

h Roll center height at vehicle CoG 0.4382 m

/ Wheel base 2.904 m

7 Wheel nominal radius 0.337 m

I, Wheel moment of inertia 1 kgm®




Notation

Notation
Symbol | Description Symbol Description
C, cornering stiffness H(k) output matrix
y/j sideslip angle G(k) input matrix
l,1, longitudinal distance from front P(klk-1) a-priori error propagation
' and rear axle to vehicle CoG covariance matrix
o, roll rate P(klk) a-posteriori error propagation
covariance matrix
o, pitch rate K(k) Kalman filter gain matrix
o. yaw rate x(k) state vector
a, longitudinal acceleration y(k) measurement (output) vector
a, lateral acceleration ) steering angle
a. vertical acceleration T, sampling time
% pitch angle F, vehicle lateral force
¢ roll angle qi state variance (g; = ¢i;)
Y yaw angle (heading) ri measurement variance (7; = 7;;)
u longitudinal velocity (body frame) | x(k | k) a-posteriori state vector estimate
v lateral velocity (body frame) X(k | k —1) | a-priori state vector estimate
w vertical velocity (body frame) he vehicle CoG height
t vehicle track g gravity acceleration constant
T nominal tire radius L. roll moment of inertia
Ve effective tire radius b longitudinal distance from front
axle to CoG
r measurement covariance c longitudinal distance from rear
axle to CoG
q state covariance A adaptive fading scalling matrix
Q state covariance matrix r adaptive fading measurement
covariance scalling matrix
measurement covariance matrix A adaptive fading state covariance
scalling matrix
7 braking torque K state covariance scaling factor
o, o tire slip angle (front and rear) @ measurement covariance scaling
factor
m vehicle mass ady Nad scaling coefficients of SSF
adaptive Kalman filter
I yaw moment of inertia C, innovation covariance matrix
n; tire longitudinal slip X, x, residual (absolute error) of x
F(k) state transition matrix £ relative error of x
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